Мегагайд: культура работы с Git
Git — это не только (и не столько!) знание самой технологии и конкретных команд, но и определённая культура взаимодействия, практики, подходы, договорённости. Всё это помогает участникам команды лучше понимать друг друга и работать быстрее и чётче.
В статье — как раз об этом. В ней раскрыли, что формирует культуру работы с Git: от конвенций именования коммитов и до практик работы в пуллреквесте. В конце статьи — полезные ссылки на интерактивные обучалки, шпаргалки и гайды: https://habr.com/ru/companies/yandex_praktikum/articles/812139/
#git #шпаргалки
Git — это не только (и не столько!) знание самой технологии и конкретных команд, но и определённая культура взаимодействия, практики, подходы, договорённости. Всё это помогает участникам команды лучше понимать друг друга и работать быстрее и чётче.
В статье — как раз об этом. В ней раскрыли, что формирует культуру работы с Git: от конвенций именования коммитов и до практик работы в пуллреквесте. В конце статьи — полезные ссылки на интерактивные обучалки, шпаргалки и гайды: https://habr.com/ru/companies/yandex_praktikum/articles/812139/
#git #шпаргалки
❤1
🔥 7 000+ упражнений на 76 языках программирования
Exercism — бесплатная платформа для прокачки навыков программирования с нуля. Каждый язык — отдельный путь, наполненный практическими задачами.
Главный плюс — обратная связь от опытных менторов. Ответы здесь не быстрые, зато по делу и без токсичности, как это бывает на Stack Overflow.
https://exercism.org/
Exercism — бесплатная платформа для прокачки навыков программирования с нуля. Каждый язык — отдельный путь, наполненный практическими задачами.
Главный плюс — обратная связь от опытных менторов. Ответы здесь не быстрые, зато по делу и без токсичности, как это бывает на Stack Overflow.
https://exercism.org/
🔥4❤1
Forwarded from Golang
Вот основные обновления:
1. Новый уровень работы с cruft packs
- Git хранит неиспользуемые (невидимые) объекты в специальных “cruft packs”.
- Раньше управлять ими было сложно: чтобы добавить или объединить объекты, нужно было всё перепаковывать, что занимало много времени и места.
- Теперь появился флаг
--combine-cruft-below-size
: можно легко объединять мелкие cruft packs в один, постепенно “чистить” репозиторий. - Исправлена важная ошибка: раньше такие объекты могли случайно удаляться раньше времени — теперь это под контролем.
2. Быстрее для больших репозиториев — многослойные битмапы
- В больших проектах Git создаёт специальные “карты” (bitmaps), чтобы быстро понимать, какие объекты нужны для определённых коммитов.
- Новая версия поддерживает “инкрементальные” битмапы для multi-pack index — можно добавлять новые данные быстро, не пересоздавая всю структуру.
3. Новый движок слияния ORT
- Старый движок
recursive
полностью удалён: теперь слияния (`merge`) обрабатывает только быстрый и надёжный ORT.- Это упростит разработку, повысит скорость merge и уменьшит количество ошибок.
4. Улучшения в утилитах и команде cat-file
- Теперь можно фильтровать объекты по типу, например, быстро получить только “деревья” (tree) с помощью
--filter='object:type=tree'
. - Команда для удаления reflog стала интуитивной: вместо сложных параметров просто пишем
git reflog delete <branch>
.5. Больше контроля над сетевыми соединениями
- Добавлены настройки для TCP Keepalive, теперь можно гибко управлять поведением Git в нестабильных сетях.
6. Меньше Perl — проще тестировать и собирать
- Git ещё больше избавился от зависимостей на Perl: тесты и документация теперь проще и стабильнее, особенно на системах без Perl.
7. Работа с разреженными (sparse) репозиториями стала удобнее
- Команды вроде
git add -p
теперь не требуют полной загрузки содержимого — удобно при работе с огромными проектами.8. Косметические улучшения
- При ребейзе (rebase -i) названия коммитов теперь оформляются как комментарии — так ясно, что это просто для ориентира.
9. Быстрее клонируем через bundle-uri
- Git стал лучше справляться с ускоренным клонированием через *.bundle: теперь клиент правильно учитывает все ссылки, ускоряя загрузку репозитория.
Git 2.50 — это не просто исправление багов, а реальное ускорение и упрощение работы для всех, кто ведёт большие проекты, часто сливает ветки и заботится о “чистоте” репозитория. Новые команды делают жизнь проще, а старые баги — ушли в прошлое.
@golang_google
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤2
🧠 GitHub раскрывает планы по следующей эволюции Copilot — от помощника к полноценному агенту.
🔗 В новом посте GitHub делится видением agentic workflows — когда Copilot становится не просто ассистентом, а полноценным участником команды, который умеет:
• понимать задачу целиком,
• планировать шаги,
• писать и менять код,
• создавать PR и даже инициировать обсуждение.
📌 Что важно:
— Copilot теперь работает в рамках цепочек действий (tasks → plans → code)
— Появляются memory и context-aware агенты
— Идея — не просто "автодополнение", а делегирование работы: от заведения ишью до его закрытия
— Акцент на безопасную, контролируемую автоматизацию
⚙️ Пример: вы создаёте issue → Copilot планирует, как решить → предлагает PR → вы ревьюите и мёрджите.
🛠 Уже сейчас GitHub тестирует:
- Copilot Workspace (автогенерация изменений по issue)
- GitHub Agents (task‑oriented агенты для DevOps и beyond)
📎 Читайте подробнее:
Copilot перестаёт быть просто AI‑другом в редакторе — он становится сотрудником, который понимает задачи, работает в контексте проекта и помогает двигать код вперёд.
🔗 В новом посте GitHub делится видением agentic workflows — когда Copilot становится не просто ассистентом, а полноценным участником команды, который умеет:
• понимать задачу целиком,
• планировать шаги,
• писать и менять код,
• создавать PR и даже инициировать обсуждение.
📌 Что важно:
— Copilot теперь работает в рамках цепочек действий (tasks → plans → code)
— Появляются memory и context-aware агенты
— Идея — не просто "автодополнение", а делегирование работы: от заведения ишью до его закрытия
— Акцент на безопасную, контролируемую автоматизацию
⚙️ Пример: вы создаёте issue → Copilot планирует, как решить → предлагает PR → вы ревьюите и мёрджите.
🛠 Уже сейчас GitHub тестирует:
- Copilot Workspace (автогенерация изменений по issue)
- GitHub Agents (task‑oriented агенты для DevOps и beyond)
📎 Читайте подробнее:
Copilot перестаёт быть просто AI‑другом в редакторе — он становится сотрудником, который понимает задачи, работает в контексте проекта и помогает двигать код вперёд.
👍3💩2👏1
🔍 DVC — Git для данных и ML-моделей. Этот инструмент делает для данных то же, что Git для кода — позволяет отслеживать изменения, переключаться между версиями и работать в команде без хаоса.
DVC не загружает тяжелые файлы в Git-репозиторий, а хранит их в облаке или локально, записывая только метаданные. Особенно удобна интеграция с ML-пайплайнами: можно настраивать зависимости между этапами обработки данных и обучения, а он будет перезапускать только изменившиеся части. При этом инструмент отлично дополняет MLflow: первый управляет версиями данных, второй — трекит эксперименты.
🤖 GitHub
DVC не загружает тяжелые файлы в Git-репозиторий, а хранит их в облаке или локально, записывая только метаданные. Особенно удобна интеграция с ML-пайплайнами: можно настраивать зависимости между этапами обработки данных и обучения, а он будет перезапускать только изменившиеся части. При этом инструмент отлично дополняет MLflow: первый управляет версиями данных, второй — трекит эксперименты.
🤖 GitHub
❤3🔥3🥰1
Принцип простой: описываете, что хотите получить, нажимаете Optimize — GPT-5 анализирует запрос и выдаёт готовый детализированный промт. Работает бесплатно.
Инструмент может упростить работу с любыми нейросетями, особенно если у вас нет опыта в составлении промтов.
Готовый вы можете сразу попробовать в @Chatgpturbobot
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1👍1👎1
Media is too big
VIEW IN TELEGRAM
Метод преодоления "барьера сортировки" для задач кратчайшего пути в ориентированных графах.
Группа исследователей из университетов Синьхуа, Стенфорда и Института Макса Планика представили детерминированный алгоритм для решения задачи SSSP в ориентированных графах с неотрицательными вещественными весами, который работает за время, пропорциональное числу ребер, умноженному на логарифмический множитель, который растет медленнее, чем обычный логарифм.
Проблема поиска кратчайшего пути от одной вершины до всех остальных (SSSP) — одна из фундаментальных в теории графов, и её история тянется с 50-х годов прошлого века. Классический алгоритм Дейкстры, в связке с продвинутыми структурами данных, решает эту задачу за время, которое примерно пропорционально сумме числа рёбер и произведения числа вершин на логарифм от их же числа.
Именно этот множитель - число вершин, умноженное на логарифм, долгое время считался теоретическим минимумом, так как в своей основе алгоритм Дейкстры побочно сортирует вершины по расстоянию от источника. Этот предел известен как «барьер сортировки» и казался непреодолимым.
Алгоритм Дейкстры на каждом шаге выбирает из "границы" - множества еще не обработанных вершин ту, что находится ближе всего к источнику. Это и создает узкое место, так как размер границы может достигать величины, сопоставимой с общим числом вершин в графе, и на каждом шаге требуется находить минимум.
Алгоритм Беллмана-Форда, в свою очередь, не требует сортировки, но его сложность пропорциональна числу ребер, умноженному на количество шагов, что слишком долго.
Вместо того чтобы поддерживать полную отсортированную границу, алгоритм фокусируется на ее сокращении. А если граница слишком велика, то запускается несколько шагов алгоритма Беллмана-Форда из ее вершин.
Это позволяет найти точное расстояние до некоторой части вершин, чьи кратчайшие пути коротки. Длинные же пути должны проходить через одну из "опорных" вершин, которых оказывается значительно меньше, чем вершин в исходной границе. Таким образом, сложная работа концентрируется только на этом небольшом наборе опорных точек.
Он рекурсивно разбивает задачу на несколько уровней. На каждом уровне применяется вышеописанная техника сокращения границы, что позволяет значительно уменьшить объем работы на каждую вершину, поскольку логарифмический множитель эффективно делится на другой, более медленно растущий логарифмический член.
В итоге, путем подбора внутренних параметров алгоритма, которые являются специфическими функциями от логарифма числа вершин, и достигается итоговая временная сложность, пропорциональная числу ребер, умноженному на этот новый, более медленно растущий логарифмический множитель.
— Быстрее решаются задачи в навигации, графах дорог, сетях и планировании.
— Доказано, что Дейкстра — не предел, и можно ещё ускорять поиск кратчайших путей.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
Forwarded from Machinelearning
NASA и IBM выпустили в опенсорс Surya Heliophysics Foundational Model — крупномасштабную ИИ-модель, обученную на данных за 9 лет наблюдений за космосом спутника Solar Dynamics Observatory (SDO).
Солнечные бури влияют на нашу жизнь:
🛰️ могут вывести из строя спутники
✈️ нарушить работу навигации в самолётах
⚡ вызвать перебои с электричеством
👨🚀 создать радиационную угрозу для астронавтов
Иногда вспышки сопровождаются потоками частиц, которые повреждают электронику и опасны для здоровья.
- Обучена на 14 годах наблюдений за Солнцем
- Позволяет предсказать вспышки на солнце за 2 часа до их
- Показывает точное место на Солнце, где произойдёт вспышка
- Помогает заранее подготовиться авиации, энергетике и связи к возможным проблемам.
🚀 IBM и NASA десятилетиями работали над моделями климата и погоды на Земле. Теперь они перешли к прогнозированию «космической погоды».
▪HF: https://huggingface.co/nasa-ibm-ai4science
▪Модели: https://huggingface.co/nasa-ibm-ai4science/models
▪Датасеты: https://huggingface.co/nasa-ibm-ai4science/datasets
@ai_machinelearning_big_data
#AI4Science #Heliophysics #OpenScience #MachineLearning #NASA #IBM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2