Forwarded from Спутник ДЗЗ
CoastSat
CoastSat (http://coastsat.wrl.unsw.edu.au) — это набор программных средств с открытым исходным кодом на языке Python (https://github.com/kvos/CoastSat), который позволяет пользователям получать временные ряды положения береговой линии на любом побережье по всему миру за 39 лет (и далее) на основе общедоступных спутниковых снимков.
#python
CoastSat (http://coastsat.wrl.unsw.edu.au) — это набор программных средств с открытым исходным кодом на языке Python (https://github.com/kvos/CoastSat), который позволяет пользователям получать временные ряды положения береговой линии на любом побережье по всему миру за 39 лет (и далее) на основе общедоступных спутниковых снимков.
#python
Forwarded from Спутник ДЗЗ
Статистика открытых радарных данных Capella [ссылка]
Mark Litwintschik описывает процесс получения открытых данных радарных спутников Capella и классифицирует доступные снимки по регионам мира, форматам, уровням обработки, типу поляризации и т. п.
🌍 Распространение открытых данных спутников Capella.
#SAR #capella #python
Mark Litwintschik описывает процесс получения открытых данных радарных спутников Capella и классифицирует доступные снимки по регионам мира, форматам, уровням обработки, типу поляризации и т. п.
🌍 Распространение открытых данных спутников Capella.
#SAR #capella #python
👍2
Forwarded from Спутник ДЗЗ
В Alaska Satellite Facility завершено создание архива “импульсов” Sentinel-1 [ссылка]
Работа, проделанная Alaska Satellite Facility (ASF), позволяет существенно сэкономить время и вычислительные ресурсы, необходимые для анализа радарных данных Sentinel-1. Что же было сделало?
Типичный файл радарных данных Sentinel-1 Single-Look Complex (SLC) содержат три полосы (swath) данных по 8–10 импульсов (burst) в каждой. Такие файлы имеют довольно большой объем (4–5 Гб) и используются, в частности, для радарной интерферометрии.
Вырезать нужный фрагмент из данных Sentinel-1 SLC не так просто, как из оптического снимка. “Виноват” метод получения данных, TopSAR, при которым данные собираются импульсами путем циклического переключения луча антенны между несколькими соседними полосами. На рисунке 1️⃣ показана схема сканирования в трёх полосах (а) и сканирование импульсами в пределах одной полосы (b). Результат выглядит примерно так, как показано на рисунке 2️⃣ (источник).
Таким образом, импульс (burst) является атомарной единицей данных Sentinel-1 SLC. При изучении небольших объектов, таких как вулканы или оползни, достаточно взять из соседних по времени снимков только импульсы, покрывающие исследуемый объект, и построить по ним интерферограмму. Размер одного импульса составляет около 4% от общего размера файл данных.
До сих пор, прежде чем выбрать нужный импульс, мы должны были сначала скачать весь файл. Теперь этого делать не нужно, достаточно использовать новый продукт 🌍 Sentinel-1 Burst SLC 3️⃣.
Особенно приятно, что с импульсами уже работает HyP3: HyP3 Burst InSAR. С его помощью можно заказать генерацию InSAR-данных по одиночным импульсам.
Пакет burst2safe для 🐍 Python позволяет конвертировать данные импульсов в SAFE-файл, для использования в SAR-процессоре (например, в SNAP). В будущем SAFE станет для импульсов форматом по умолчанию.
#InSAR #python #данные
Работа, проделанная Alaska Satellite Facility (ASF), позволяет существенно сэкономить время и вычислительные ресурсы, необходимые для анализа радарных данных Sentinel-1. Что же было сделало?
Типичный файл радарных данных Sentinel-1 Single-Look Complex (SLC) содержат три полосы (swath) данных по 8–10 импульсов (burst) в каждой. Такие файлы имеют довольно большой объем (4–5 Гб) и используются, в частности, для радарной интерферометрии.
Вырезать нужный фрагмент из данных Sentinel-1 SLC не так просто, как из оптического снимка. “Виноват” метод получения данных, TopSAR, при которым данные собираются импульсами путем циклического переключения луча антенны между несколькими соседними полосами. На рисунке 1️⃣ показана схема сканирования в трёх полосах (а) и сканирование импульсами в пределах одной полосы (b). Результат выглядит примерно так, как показано на рисунке 2️⃣ (источник).
Таким образом, импульс (burst) является атомарной единицей данных Sentinel-1 SLC. При изучении небольших объектов, таких как вулканы или оползни, достаточно взять из соседних по времени снимков только импульсы, покрывающие исследуемый объект, и построить по ним интерферограмму. Размер одного импульса составляет около 4% от общего размера файл данных.
До сих пор, прежде чем выбрать нужный импульс, мы должны были сначала скачать весь файл. Теперь этого делать не нужно, достаточно использовать новый продукт 🌍 Sentinel-1 Burst SLC 3️⃣.
Особенно приятно, что с импульсами уже работает HyP3: HyP3 Burst InSAR. С его помощью можно заказать генерацию InSAR-данных по одиночным импульсам.
Пакет burst2safe для 🐍 Python позволяет конвертировать данные импульсов в SAFE-файл, для использования в SAR-процессоре (например, в SNAP). В будущем SAFE станет для импульсов форматом по умолчанию.
#InSAR #python #данные
Forwarded from Спутник ДЗЗ
Пример работы с открытыми спутниковыми данными Wyvern
В феврале канадская компания Wyvern запустила программу открытых данных своих гиперспектральных 🛰 спутников Dragonette. Эти спутники находятся на орбитах высотой 517–550 км над и имеют обеспечивают пространственное разрешение в надире (GSD) — 5,3 м.
Сейчас доступны данные Dragonette-1 в видимом и ближнем инфракрасном диапазонах — Standard VNIR (23 канала) и Extended VNIR (31 канал).
🔗 В этом посте Марк Литвинчик (Mark Litwintschik) экспериментирует с общедоступными данными Wyvern.
📸 Художественное изображение космического аппарата Dragonette.
#софт #python #гиперспектр
В феврале канадская компания Wyvern запустила программу открытых данных своих гиперспектральных 🛰 спутников Dragonette. Эти спутники находятся на орбитах высотой 517–550 км над и имеют обеспечивают пространственное разрешение в надире (GSD) — 5,3 м.
Сейчас доступны данные Dragonette-1 в видимом и ближнем инфракрасном диапазонах — Standard VNIR (23 канала) и Extended VNIR (31 канал).
🔗 В этом посте Марк Литвинчик (Mark Litwintschik) экспериментирует с общедоступными данными Wyvern.
📸 Художественное изображение космического аппарата Dragonette.
#софт #python #гиперспектр
Forwarded from Спутник ДЗЗ
Обнаружение объектов на снимках Maxar в пакете GeoDeep
В этом посте Марк Литвинчик (Mark Litwintschik) запускает встроенные в GeoDeep модели искусственного интеллекта на снимках Мьянмы и Бангкока (Таиланд), сделанных спутниками компании Maxar.
GeoDeep — Python-пакет для обнаружения объектов на спутниковых снимках. Пакет насчитывает около 1000 строк кода и использует ONNX Runtime и Rasterio.
Ниже приведены готовые модели из состава GeoDeep. Назначение их ясно их названий:
• aerovision
• birds
• buildings
• cars
• planes
• roads
• trees
• trees_yolov9
Спойлер:сколько-нибудь вменяемые результаты показала только модель buildings.
#софт #python #ИИ
В этом посте Марк Литвинчик (Mark Litwintschik) запускает встроенные в GeoDeep модели искусственного интеллекта на снимках Мьянмы и Бангкока (Таиланд), сделанных спутниками компании Maxar.
GeoDeep — Python-пакет для обнаружения объектов на спутниковых снимках. Пакет насчитывает около 1000 строк кода и использует ONNX Runtime и Rasterio.
Ниже приведены готовые модели из состава GeoDeep. Назначение их ясно их названий:
• aerovision
• birds
• buildings
• cars
• planes
• roads
• trees
• trees_yolov9
Спойлер:
#софт #python #ИИ
Forwarded from Спутник ДЗЗ
"Найди мне все лесопилки…"
Сэмюель Барретт (Samuel Barrett) показывает здесь и здесь как использовать предварительно вычисленные эмбеддинги ДЗЗ из базовой модели Клэя (Clay) на снимках NAIP для быстрой идентификации лесопилок в штатах Вашингтон и Орегон.
🛢 NAIP data embedded with Clay v1.5 (rev2)
🖥 Репозиторий кода на GitHub
Эксперимент показывает как эмбеддинги позволяют быстро отвечать на вопросы вроде "Что где находится?" в больших географических масштабах.
#ИИ #python
Сэмюель Барретт (Samuel Barrett) показывает здесь и здесь как использовать предварительно вычисленные эмбеддинги ДЗЗ из базовой модели Клэя (Clay) на снимках NAIP для быстрой идентификации лесопилок в штатах Вашингтон и Орегон.
🛢 NAIP data embedded with Clay v1.5 (rev2)
🖥 Репозиторий кода на GitHub
Эксперимент показывает как эмбеддинги позволяют быстро отвечать на вопросы вроде "Что где находится?" в больших географических масштабах.
#ИИ #python
Forwarded from Спутник ДЗЗ
geocompx — ресурсы по геовычислениям на R, Python и Julia
Проект geocompx (https://geocompx.org) — это онлайн-площадка для сбора информации о методах анализа пространственных данных, моделирования и визуализации, а также о преподавании геовычислений с помощью программного обеспечения с открытым исходным кодом на нескольких языках программирования — R, Python, Julia и других.
Проект начался с онлайн-публикации книги “Geocomputation with R”, которая помогла создать сообщество студентов и специалистов. По мере роста интереса к другим языкам и кроссплатформенным подходам стала очевидной необходимость в более широком, не зависящем от языка подходе. Так и появился geocompx.
Среди участников сообщества — Robin Lovelace, Jakub Nowosad и Jannes Muenchow — все авторы “Geocomputation with R”
Благодарим за наводку Евгения Матерова, ведущего тг-канал “Наука и данные”.
#R #python #julia
Проект geocompx (https://geocompx.org) — это онлайн-площадка для сбора информации о методах анализа пространственных данных, моделирования и визуализации, а также о преподавании геовычислений с помощью программного обеспечения с открытым исходным кодом на нескольких языках программирования — R, Python, Julia и других.
Проект начался с онлайн-публикации книги “Geocomputation with R”, которая помогла создать сообщество студентов и специалистов. По мере роста интереса к другим языкам и кроссплатформенным подходам стала очевидной необходимость в более широком, не зависящем от языка подходе. Так и появился geocompx.
Среди участников сообщества — Robin Lovelace, Jakub Nowosad и Jannes Muenchow — все авторы “Geocomputation with R”
Благодарим за наводку Евгения Матерова, ведущего тг-канал “Наука и данные”.
#R #python #julia
❤1
Forwarded from Спутник ДЗЗ
GeoAI: Искусственный интеллект для пространственных данных
GeoAI — пакет Python для применения методов искусственного интеллекта в анализе и визуализации пространственных данных.
🤖 GeoAI содержит инструменты для обработки, анализа и визуализации пространственных данных с помощью передовых методов машинного обучения. Как сказано в документации: “Независимо от того, работаете ли вы со спутниковыми снимками, облаками точек лидара или векторными данными, GeoAI предлагает интуитивно понятные интерфейс для применения передовых моделей ИИ.”
📖 Документация GeoAI
Среди возможностей GeoAI:
📊 Визуализация пространственных данных
● Интерактивная многослойная визуализация векторных, растровых и облачных данных
● Настраиваемые стили и символика
● Возможности визуализации временных рядов данных
🛠 Подготовка и обработка данных
● Упрощенный доступ к спутниковым и аэрофотоснимкам Sentinel, Landsat, NAIP и другим открытым данных
● Инструменты для загрузки, создания мозаик и предварительной обработки данных дистанционного зондирования
● Автоматизированная генерация обучающих датасетов с чипами изображений (image chips) и соответствующими метками
● Утилиты преобразования векторных данных в растровые и наоборот, оптимизированные для рабочих процессов ИИ
● Методы дополнения (augmentation) данных, специфичные для пространственных данных
● Поддержка интеграции данных Overture Maps и других открытых данных для обучения и проверки
🖼 Сегментация изображений
● Интеграция с моделью Segment Anything Model (SAM) компании Meta для автоматического извлечения признаков
● Специализированные алгоритмы сегментации, оптимизированные для спутниковых и аэрофотоснимков
● Оптимизированные рабочие процессы для сегментации зданий, дорог, растительности и водных объектов
● Возможность экспорта в стандартные форматы геоданных: GeoJSON, Shapefile, GeoPackage, GeoParquet
🔍 Классификация изображений
● Предварительно обученные модели для классификации земного покрова и землепользования (land cover & land use)
● Утилиты трансферного обучения (transfer learning) для тонкой настройки моделей на основе собственных данных
● Поддержка разновременной классификации для обнаружения изменений (change detection)
● Инструменты оценки точности и валидации
🌍 Дополнительные возможности
● Анализ рельефа с извлечением признаков при помощи ИИ
● Классификация и сегментация облаков точек
● Обнаружение объектов на авиационных и спутниковых снимках
● Утилиты геопривязки для результатов ИИ-моделей
Пакет разработан профессором Q. Wu. Для него мы завели на канале именной хештег: #wu
📹 Руководства по GeoAI на YouTube
#python #wu #софт #ИИ
GeoAI — пакет Python для применения методов искусственного интеллекта в анализе и визуализации пространственных данных.
🤖 GeoAI содержит инструменты для обработки, анализа и визуализации пространственных данных с помощью передовых методов машинного обучения. Как сказано в документации: “Независимо от того, работаете ли вы со спутниковыми снимками, облаками точек лидара или векторными данными, GeoAI предлагает интуитивно понятные интерфейс для применения передовых моделей ИИ.”
📖 Документация GeoAI
Среди возможностей GeoAI:
📊 Визуализация пространственных данных
● Интерактивная многослойная визуализация векторных, растровых и облачных данных
● Настраиваемые стили и символика
● Возможности визуализации временных рядов данных
🛠 Подготовка и обработка данных
● Упрощенный доступ к спутниковым и аэрофотоснимкам Sentinel, Landsat, NAIP и другим открытым данных
● Инструменты для загрузки, создания мозаик и предварительной обработки данных дистанционного зондирования
● Автоматизированная генерация обучающих датасетов с чипами изображений (image chips) и соответствующими метками
● Утилиты преобразования векторных данных в растровые и наоборот, оптимизированные для рабочих процессов ИИ
● Методы дополнения (augmentation) данных, специфичные для пространственных данных
● Поддержка интеграции данных Overture Maps и других открытых данных для обучения и проверки
🖼 Сегментация изображений
● Интеграция с моделью Segment Anything Model (SAM) компании Meta для автоматического извлечения признаков
● Специализированные алгоритмы сегментации, оптимизированные для спутниковых и аэрофотоснимков
● Оптимизированные рабочие процессы для сегментации зданий, дорог, растительности и водных объектов
● Возможность экспорта в стандартные форматы геоданных: GeoJSON, Shapefile, GeoPackage, GeoParquet
🔍 Классификация изображений
● Предварительно обученные модели для классификации земного покрова и землепользования (land cover & land use)
● Утилиты трансферного обучения (transfer learning) для тонкой настройки моделей на основе собственных данных
● Поддержка разновременной классификации для обнаружения изменений (change detection)
● Инструменты оценки точности и валидации
🌍 Дополнительные возможности
● Анализ рельефа с извлечением признаков при помощи ИИ
● Классификация и сегментация облаков точек
● Обнаружение объектов на авиационных и спутниковых снимках
● Утилиты геопривязки для результатов ИИ-моделей
Пакет разработан профессором Q. Wu. Для него мы завели на канале именной хештег: #wu
📹 Руководства по GeoAI на YouTube
#python #wu #софт #ИИ
❤2