Forwarded from Студенческий семинар по маломерной топологии
Гомологические сферы и алгоритмическая неразрешимость в топологии
Материалы
▪️Видеозаписи (продолжительность: 5 часов)
Программа
Пререквизиты
Уверенное знакомство с основами теории групп (смежные классы, нормальные подгруппы, теорема о гомоморфизме, классы сопряженности, группы перестановок). Знакомство с теорией гомологий НЕ предполагается. Полезно (но не обязательно) знакомство с понятием фундаментальной группы и (на интуитивном уровне) с понятием многообразия.
Литература
▪️Н. Савельев. Лекции по топологии трехмерных многообразий: введение в инвариант Кассона. Перевод с англ. И. Дынникова. М.: МЦНМО, 2004.
▪️O. Şavk. A survey of the homology cobordism group. Bulletin of the American Mathematical Society. 2023.
Сборник материалов по маломерной топологии: ссылка
Одной из ключевых проблем, определивших развитие топологии и геометрии в 20-м веке, стала знаменитая гипотеза Пуанкаре, утверждающая, что всякое односвязное компактное трехмерное многообразие без края гомеоморфно стандартной трехмерной сфере. О трехмерном многообразии можно думать как об объекте, который локально (в окрестности каждой точки) устроен как наше обычное трехмерное пространство. Ключевым в формулировке гипотезы является слово «односвязное», означающее, что в рассматриваемом многообразии всякая замкнутая кривая (петля) может быть непрерывно стянута в точку или, что эквивалентно, заклеена топологическим диском.
Гипотеза Пуанкаре была доказана в серии замечательных работ Г. Я. Перельмана 2002—2003 годов. Однако содержание курса будет связано не с доказательством этой гипотезы, а с ее возникновением. Изначально (в 1900 году) Анри Пуанкаре сформулировал свою гипотезу неправильно. Вместо условия односвязности он потребовал выполнения лишь более слабого условия, а именно, того, что каждая замкнутая кривая в многообразии должна заклеиваться ориентированной двумерной поверхностью (не обязательно диском!). В 1904 году Пуанкаре сам нашел контрпример к изначальной версии своей гипотезы и уточнил ее формулировку. Этот контрпример — трехмерное многообразие, называемое с тех пор гомологической сферой Пуанкаре, — будет главным объектом первой половины курса. Я расскажу о различных конструкциях сферы Пуанкаре, связанных с группой симметрии правильного икосаэдра, кватернионами, перестройками вдоль узлов и зацеплений, диаграммой Дынкина E8.
Вторая половина курса будет посвящена 4- и 5-мерным гомологическим сферам и их связям с теорией групп и теоремами об алгоритмической неразрешимости в топологии. Я расскажу о:
▪️принадлежащей М. Керверу характеризации фундаментальных групп 5-мерных гомологических сфер,
▪️теореме А. А. Маркова (младшего) об алгоритмической неразрешимости проблемы гомеоморфности для четырехмерных многообразий,
▪️теореме С. П. Новикова об алгоритмической нераспознаваемости пятимерной сферы,
а также об их более современных следствиях и открытых проблемах в этой области.
Материалы
▪️Видеозаписи (продолжительность: 5 часов)
Программа
1. Необходимые сведения: фундаментальная группа и первая группа гомологий, задание групп образующими и соотношениями, вычисления для клеточных пространств
2. Дефект фундаментальных групп замкнутых 3-многообразий неотрицателен, а для гомологических сфер — нулевой
3. Задание группы A_5 вращений додекаэдра образующими и соотношениями
4. Любое центральное расширение совершенной группы нулевого дефекта тривиально
5. Центральное расширение C_2 —> S^3 —> SO(3) как двулистное накрытие, сфера Пуанкаре как фактор трёхмерной сферы по действию бинарной группы икосаэдра, 120-ячеечник
6. Генерация гомологических сфер:
▪️перестройки по узлам (хирургии Дена), сфера Пуанкаре как [-1]-перестройка по трилистнику и как [-2]-перестройка по зацеплению E_8
▪️сферы Брискорна: пересечения единичной 5-мерной сферы с комплексными гиперповерхностями x^p + y^q + z^r = 0 в C^3
7. Группы гомологических кобордизмов, гомологические сферы в старших размерностях
8. Вторая группа гомологий и формула Хопфа, суперсовершенность
9. Алгоритмическая нераспознаваемость n-сфер при n>=5 и связной суммы 16#(S^2xS^2)
10. Реализация конечно-определённых групп фундаментальными группами 4-многообразий
Пререквизиты
Уверенное знакомство с основами теории групп (смежные классы, нормальные подгруппы, теорема о гомоморфизме, классы сопряженности, группы перестановок). Знакомство с теорией гомологий НЕ предполагается. Полезно (но не обязательно) знакомство с понятием фундаментальной группы и (на интуитивном уровне) с понятием многообразия.
Литература
▪️Н. Савельев. Лекции по топологии трехмерных многообразий: введение в инвариант Кассона. Перевод с англ. И. Дынникова. М.: МЦНМО, 2004.
▪️O. Şavk. A survey of the homology cobordism group. Bulletin of the American Mathematical Society. 2023.
Сборник материалов по маломерной топологии: ссылка
YouTube
А.А.Гайфуллин. Гомологические сферы и алгоритмическая неразрешимость в топологии (ЛШСМ-2021)
Лекция на XX Летней школе «Современная математика» имени Виталия Арнольда.
https://mccme.ru/dubna/2021/courses/gaifullin.html
Ратмино, 22.07.2021.
https://mccme.ru/dubna/2021/courses/gaifullin.html
Ратмино, 22.07.2021.
🔥3💯2