Группы и теория гомотопий: введение
00:00 Акт устрашения
07:37 Введение в курс
12:34 Субкультуры в математике
15:27 Методы в математике
17:30 Развитие математики: проблемы и теории
24:00 Гомотопические группы
28:04 Гомотопические группы двумерной сферы
33:08 Как изучать алгебраическую топологию
36:05 Гомотопические группы буктов сфер
38:59 Гомотопические группы клеточных комплексов
42:45 Эллиптические и гиперболические пространства
43:43 Гипотеза Мура: примеры и хаос
46:56 Подходы и методы, примеры и сложности
49:06 Методы познания
52:20 Карта мира теории групп
54:56 Проблемы и группы Бернсайда
01:00:15 Монстры Тарского и аномалии
01:08:40 Гипотеза асферичности Уайтхеда
01:12:09 Совершенный радикал и нижний центральный ряд
01:16:59 Экзотические группы
(источник)
00:00 Акт устрашения
07:37 Введение в курс
12:34 Субкультуры в математике
15:27 Методы в математике
17:30 Развитие математики: проблемы и теории
24:00 Гомотопические группы
28:04 Гомотопические группы двумерной сферы
33:08 Как изучать алгебраическую топологию
36:05 Гомотопические группы буктов сфер
38:59 Гомотопические группы клеточных комплексов
42:45 Эллиптические и гиперболические пространства
43:43 Гипотеза Мура: примеры и хаос
46:56 Подходы и методы, примеры и сложности
49:06 Методы познания
52:20 Карта мира теории групп
54:56 Проблемы и группы Бернсайда
01:00:15 Монстры Тарского и аномалии
01:08:40 Гипотеза асферичности Уайтхеда
01:12:09 Совершенный радикал и нижний центральный ряд
01:16:59 Экзотические группы
(источник)
YouTube
Лекция 1 | Группы и теория гомотопий | Роман Михайлов | Лекториум
Лекция 1 | Курс: Группы и теория гомотопий | Лектор: Роман Михайлов | Организатор: Математическая лаборатория имени П.Л.Чебышева
Смотрите это видео на Лекториуме: https://lektorium.tv/lecture/14216
Подписывайтесь на канал: https://www.lektorium.tv/ZJA
Следите…
Смотрите это видео на Лекториуме: https://lektorium.tv/lecture/14216
Подписывайтесь на канал: https://www.lektorium.tv/ZJA
Следите…
🤩16😁8❤3
Группы и теория гомотопий: предчувствие функториальной хирургии
00:00 Примеры в топологии и теории групп: хирургия Дэна и локальные преобразования узлов
10:40 От функторов и естественных преобразований к фильтрациям пространств
22:35 Полиномиальные функторы
37:13 Упражнения
50:10 Введение в теорию гомотопий
01:03:00 Хирургии диаграмм и квадратичных функторов
01:14:44 Функториальная хирургия
(источник)
00:00 Примеры в топологии и теории групп: хирургия Дэна и локальные преобразования узлов
10:40 От функторов и естественных преобразований к фильтрациям пространств
22:35 Полиномиальные функторы
37:13 Упражнения
50:10 Введение в теорию гомотопий
01:03:00 Хирургии диаграмм и квадратичных функторов
01:14:44 Функториальная хирургия
(источник)
YouTube
Лекция 2 | Группы и теория гомотопий | Роман Михайлов | Лекториум
Лекция 2 | Курс: Группы и теория гомотопий | Лектор: Роман Михайлов | Организатор: Математическая лаборатория имени П.Л.Чебышева
Смотрите это видео на Лекториуме: https://lektorium.tv/lecture/14228
Подписывайтесь на канал: https://www.lektorium.tv/ZJA
Следите…
Смотрите это видео на Лекториуме: https://lektorium.tv/lecture/14228
Подписывайтесь на канал: https://www.lektorium.tv/ZJA
Следите…
❤🔥7😁6 3
Группы и теория гомотопий: гомологии групп
00:00 Определение гомологий через проективные резольвенты
08:49 Классифицирующее пространство группы
10:10 Определение гомологий через симплициальные резольвенты, интуитивное понимание
12:08 Пример: групповые расширения
17:43 Формула Хопфа
24:04 Сплетения, метабелевы и нильпотентные группы
39:26 Введение в комбинаторную теорию групп
47:54 Гипотеза Пуанкаре на языке теории групп
56:33 Теорема Кана—Тёрстона
01:04:14 Категория (ко)представлений заданной группы и её функторы
01:22:01 Теория гомологий в сложных категориях
(источник)
00:00 Определение гомологий через проективные резольвенты
08:49 Классифицирующее пространство группы
10:10 Определение гомологий через симплициальные резольвенты, интуитивное понимание
12:08 Пример: групповые расширения
17:43 Формула Хопфа
24:04 Сплетения, метабелевы и нильпотентные группы
39:26 Введение в комбинаторную теорию групп
47:54 Гипотеза Пуанкаре на языке теории групп
56:33 Теорема Кана—Тёрстона
01:04:14 Категория (ко)представлений заданной группы и её функторы
01:22:01 Теория гомологий в сложных категориях
(источник)
YouTube
Лекция 3 | Группы и теория гомотопий | Роман Михайлов | Лекториум
Лекция 3 | Курс: Группы и теория гомотопий | Лектор: Роман Михайлов | Организатор: Математическая лаборатория имени П.Л.Чебышева
Смотрите это видео на Лекториуме: https://lektorium.tv/lecture/14245
Подписывайтесь на канал: https://www.lektorium.tv/ZJA
Следите…
Смотрите это видео на Лекториуме: https://lektorium.tv/lecture/14245
Подписывайтесь на канал: https://www.lektorium.tv/ZJA
Следите…
❤7😁4
Группы и теория гомотопий: запредельная алгебра
00:00 Зачем нужен гомологический язык в теории групп
02:43 Центральные и производные ряды
12:29 Стабилизация в фильтрациях
24:18 Размерные подгруппы
27:42 Контрпример Рипса и проблема Плоткина
32:43 Трансфинитные ряды и редукция к нильпотентным группам
37:37 Про‑свободные группы и гомологические гипотезы Баумслага
46:25 Высшие гомологии и их влияние на запредельную топологию
58:04 Теорема Столлингса
01:08:20 Длинные и спектральные последовательности в гомологиях групп
(источник)
00:00 Зачем нужен гомологический язык в теории групп
02:43 Центральные и производные ряды
12:29 Стабилизация в фильтрациях
24:18 Размерные подгруппы
27:42 Контрпример Рипса и проблема Плоткина
32:43 Трансфинитные ряды и редукция к нильпотентным группам
37:37 Про‑свободные группы и гомологические гипотезы Баумслага
46:25 Высшие гомологии и их влияние на запредельную топологию
58:04 Теорема Столлингса
01:08:20 Длинные и спектральные последовательности в гомологиях групп
(источник)
YouTube
Лекция 4 | Группы и теория гомотопий | Роман Михайлов | Лекториум
Лекция 4 | Курс: Группы и теория гомотопий | Лектор: Роман Михайлов | Организатор: Математическая лаборатория имени П.Л.Чебышева
Смотрите это видео на Лекториуме: https://lektorium.tv/lecture/14293
Подписывайтесь на канал: https://www.lektorium.tv/ZJA
Следите…
Смотрите это видео на Лекториуме: https://lektorium.tv/lecture/14293
Подписывайтесь на канал: https://www.lektorium.tv/ZJA
Следите…
😁7👍3🔥3🗿1
Группы и теория гомотопий: формула Ву
00:00 Введение в предельную алгебру
01:52 Группы гидры и их аппроксимируемость
05:37 Нижние центральные ряды в топологии
07:37 Группы кос
12:21 Проблемы и результаты о группах кос
17:21 Инварианты конечного порядка
20:21 Теорема Стэнфорда
24:21 Формула Ву о гомотопических группах двумерной сферы
33:21 Становление гомотопического монстра
43:51 Гиперболичность, проблема Кохрана и зацепление Уайтхеда
46:51 Объединение структур из разных областей математики в целостную картину
01:01:51 Дифференциальное исчисление Фокса
01:08:51 Стандартный двумерный комплекс группы
(источник)
00:00 Введение в предельную алгебру
01:52 Группы гидры и их аппроксимируемость
05:37 Нижние центральные ряды в топологии
07:37 Группы кос
12:21 Проблемы и результаты о группах кос
17:21 Инварианты конечного порядка
20:21 Теорема Стэнфорда
24:21 Формула Ву о гомотопических группах двумерной сферы
33:21 Становление гомотопического монстра
43:51 Гиперболичность, проблема Кохрана и зацепление Уайтхеда
46:51 Объединение структур из разных областей математики в целостную картину
01:01:51 Дифференциальное исчисление Фокса
01:08:51 Стандартный двумерный комплекс группы
(источник)
YouTube
Лекция 5 | Группы и теория гомотопий | Роман Михайлов | Лекториум
Лекция 5 | Курс: Группы и теория гомотопий | Лектор: Роман Михайлов | Организатор: Математическая лаборатория имени П.Л.Чебышева
Смотрите это видео на Лекториуме: https://lektorium.tv/lecture/14323
Подписывайтесь на канал: https://www.lektorium.tv/ZJA
Следите…
Смотрите это видео на Лекториуме: https://lektorium.tv/lecture/14323
Подписывайтесь на канал: https://www.lektorium.tv/ZJA
Следите…
👍5
Группы и теория гомотопий: проблема Капланского
00:00:05 Введение в теорию гомотопии и развитие формулы Ву
00:09:16 Нижний центральный ряд и базисы Холла
00:16:17 Гомотопические группы сфер
00:25:31 Делители нуля в групповых кольцах
00:33:25 Пример: группа кос на четырёх нитях
00:41:11 Топологические аспекты и открытые задачи
00:51:32 Комбинаторные соотношения
00:58:18 Связь с проблемой делителя нуля
01:11:59 Симплициальные объекты и резольвенты
01:16:54 Пронильпотентное пополнение
(источник)
00:00:05 Введение в теорию гомотопии и развитие формулы Ву
00:09:16 Нижний центральный ряд и базисы Холла
00:16:17 Гомотопические группы сфер
00:25:31 Делители нуля в групповых кольцах
00:33:25 Пример: группа кос на четырёх нитях
00:41:11 Топологические аспекты и открытые задачи
00:51:32 Комбинаторные соотношения
00:58:18 Связь с проблемой делителя нуля
01:11:59 Симплициальные объекты и резольвенты
01:16:54 Пронильпотентное пополнение
(источник)
YouTube
Лекция 6 | Группы и теория гомотопий | Роман Михайлов | Лекториум
Лекция 6 | Курс: Группы и теория гомотопий | Лектор: Роман Михайлов | Организатор: Математическая лаборатория имени П.Л.Чебышева
Смотрите это видео на Лекториуме: https://lektorium.tv/lecture/14349
Подписывайтесь на канал: https://www.lektorium.tv/ZJA
Следите…
Смотрите это видео на Лекториуме: https://lektorium.tv/lecture/14349
Подписывайтесь на канал: https://www.lektorium.tv/ZJA
Следите…
😁6
Группы и теория гомотопий: методы комбинаторной теории групп
00:04 Проблема Эндрюса‑Кёртиса
13:06 Открытые проблемы топологии и компьютерные исследования
22:08 Анализ групп с одним соотношением
28:26 Язык последовательностей (identity sequences)
44:13 Диаграммы Ван Кампена и картинки Игусы
53:21 Соотношение Холла-Вита
01:01:36 Проблема асферичности Уайтхеда на языке групп
01:20:26 Гипотеза Эйленберга—Гани
(источник)
00:04 Проблема Эндрюса‑Кёртиса
13:06 Открытые проблемы топологии и компьютерные исследования
22:08 Анализ групп с одним соотношением
28:26 Язык последовательностей (identity sequences)
44:13 Диаграммы Ван Кампена и картинки Игусы
53:21 Соотношение Холла-Вита
01:01:36 Проблема асферичности Уайтхеда на языке групп
01:20:26 Гипотеза Эйленберга—Гани
(источник)
YouTube
Лекция 7 | Группы и теория гомотопий | Роман Михайлов | Лекториум
Лекция 7 | Курс: Группы и теория гомотопий | Лектор: Роман Михайлов | Организатор: Математическая лаборатория имени П.Л.Чебышева
Смотрите это видео на Лекториуме: https://lektorium.tv/lecture/14371
Подписывайтесь на канал: https://www.lektorium.tv/ZJA
Следите…
Смотрите это видео на Лекториуме: https://lektorium.tv/lecture/14371
Подписывайтесь на канал: https://www.lektorium.tv/ZJA
Следите…
🐳7
Передайте знакомым старшеклассникам и будущим первокурсникам: новый сезон материалов уже здесь!
Forwarded from Math Atlas 101
Суть линейной алгебры: линейная комбинация, линейная оболочка и базисные векторы
00:00 Введение в векторные координаты
00:31 Скаляры и базисные векторы
01:55 Линейные комбинации векторов
03:36 Линейная оболочка
04:40 Представление векторов точками
06:05 Линейная оболочка в трёхмерном пространстве
08:24 Линейная зависимость и независимость
(источник)
00:00 Введение в векторные координаты
00:31 Скаляры и базисные векторы
01:55 Линейные комбинации векторов
03:36 Линейная оболочка
04:40 Представление векторов точками
06:05 Линейная оболочка в трёхмерном пространстве
08:24 Линейная зависимость и независимость
(источник)
YouTube
Суть линейной алгебры: #2. Линейная комбинация, линейная оболочка и базисные векторы [3Blue1Brown]
По вопросам рекламы: [email protected]
Поддержать проект можно по ссылкам:
Если вы в России: https://boosty.to/vertdider
Если вы не в России: https://www.patreon.com/VertDider
Второе видео из серии, посвященной линейной алгебре. Грант с канала…
Поддержать проект можно по ссылкам:
Если вы в России: https://boosty.to/vertdider
Если вы не в России: https://www.patreon.com/VertDider
Второе видео из серии, посвященной линейной алгебре. Грант с канала…
❤5
Группы и теория гомотопий: дыры соотношений
00:00 О страхе перед открытыми проблемами
09:27 Построение контрпримеров к гипотезе Уайтхеда
26:34 Модуль соотношений и дыры соотношений
38:22 Пример: Z_2*Z_3
48:36 Применение топологии
01:02:01 Соотношения между соотношениями
(источник)
00:00 О страхе перед открытыми проблемами
09:27 Построение контрпримеров к гипотезе Уайтхеда
26:34 Модуль соотношений и дыры соотношений
38:22 Пример: Z_2*Z_3
48:36 Применение топологии
01:02:01 Соотношения между соотношениями
(источник)
YouTube
Лекция 8 | Группы и теория гомотопий | Роман Михайлов | Лекториум
Лекция 8 | Курс: Группы и теория гомотопий | Лектор: Роман Михайлов | Организатор: Математическая лаборатория имени П.Л.Чебышева
Смотрите это видео на Лекториуме: https://lektorium.tv/lecture/14393
Подписывайтесь на канал: https://www.lektorium.tv/ZJA
Следите…
Смотрите это видео на Лекториуме: https://lektorium.tv/lecture/14393
Подписывайтесь на канал: https://www.lektorium.tv/ZJA
Следите…
🥰4
Группы и теория гомотопий: теория функторов
00:00 Третья группа гомологий
13:00 Важность геометрического мышления
16:48 Функторы в свободных абелевых группах
23:16 Функториальные спектры и производные функторы
47:44 Функтор омега
51:35 Тензорный квадрат неабелевой группы
01:07:07 Дверь в неабелеву гомологическую алгебру и будущие направления
(источник)
00:00 Третья группа гомологий
13:00 Важность геометрического мышления
16:48 Функторы в свободных абелевых группах
23:16 Функториальные спектры и производные функторы
47:44 Функтор омега
51:35 Тензорный квадрат неабелевой группы
01:07:07 Дверь в неабелеву гомологическую алгебру и будущие направления
(источник)
YouTube
Лекция 9 | Группы и теория гомотопий | Роман Михайлов | Лекториум
Лекция 9 | Курс: Группы и теория гомотопий | Лектор: Роман Михайлов | Организатор: Математическая лаборатория имени П.Л.Чебышева
Смотрите это видео на Лекториуме: https://lektorium.tv/lecture/14411
Подписывайтесь на канал: https://www.lektorium.tv/ZJA
Следите…
Смотрите это видео на Лекториуме: https://lektorium.tv/lecture/14411
Подписывайтесь на канал: https://www.lektorium.tv/ZJA
Следите…
❤6🔥1🤔1😱1🌚1🗿1
Forwarded from Математика как практика
Начало научного пути
1. Проходите курсы и слушайте лекции. Осваивайте множество различных курсов: на факультете и в интернете. Вы обязаны выяснить, что представляют собой различные предметы и нравится ли вам их математический "стиль": например, являетесь ли вы "калькулятором” или “концептуализатором”; мыслите ли вы формулами или картинками; насколько "широким", по вашему мнению, будет ваш путь как математика и т.д. Плюс вы сможете присмотреться к преподавателям и обдумать вашу потенциальную совместимость с ними в плане научного руководства. #выборнаучногоруководителя
2. Посещайте семинары. Многие студенты избегают семинаров, вероятно, потому, что не имеют представления о том, что означают заявленные названия, не слышали о докладчиках, думают, что быстро потеряются, и вообще считают, что семинары предназначены для преподавателей. Это всё ошибки!
Вы столкнётесь со множеством "нейм дроппингов" и узнаете, чьи работы вам следует просмотреть, чтобы узнать больше о тех или иных областях. Вам необходимо знать все это, чтобы в конечном итоге принять взвешенное решение о том, в какой области вы хотите работать.
Семинары на самом деле ориентированы на студентов не меньше, чем на преподавателей — зачастую преподавателям было бы эффективнее просто поговорить с приглашённым докладчиком с глазу на глаз, если бы единственной целью визита было услышать доказательство его/её последней теоремы.
Это действительно правда, что когда вы только начинаете ходить на семинары, вы в основном теряетесь:
Это чувство никогда не исчезает полностью! Однако все приличные докладчики стараются начинать с уровня, понятного всем, и постепенно повышать темп. Когда в (скажем) последние пятнадцать минут они действительно пытаются объяснить свое доказательство, разумно ожидать, что немногие люди, незнакомые с этой областью, все еще следят за всеми деталями, если вообще следят. Но дело в том, что объем, за которым вы способны следить, будет увеличиваться тем больше, чем больше вы посещаете семинары — так что лучше начать как можно раньше. Более того, лекторам нравится, когда люди задают вопросы (чтобы почувствовать, что их действительно слушают, а также чтобы получить удовольствие от ответов!), поэтому не бойтесь перебивать. #коммуникация
Еще один неочевидный момент заключается в том, что лекционные курсы по своей природе построены так, чтобы быть как можно более линейными: упорядоченная последовательность определения-теоремы-доказательства является нормой (с, хочется надеяться, некоторой мотивацией!).
Это органическая, живая, грубая математика; семинар обычно ближе к математическому разговору, чем к чтению из учебника. #обучениедвижимоевопросами
3. Составьте ментальную карту того, что ещё предстоит изучить. Поймите, чего вы не знаете и что знаете. Речь идёт о вещах двух типов:
а) математические понятия/идеи
б) академические пласты деятельности.
#наведениемостов
Вот примеры второго типа: обучение математическому общению (с товарищами и преподавателями), решению задач, эффективному чтению статей, ясному письму и выступлению с докладами, поиск научного руководителя, поиск темы (направления) научной работы, поиск конкретной задачи для исследования, исследовательский процесс.
Джастин Робертс
1. Проходите курсы и слушайте лекции. Осваивайте множество различных курсов: на факультете и в интернете. Вы обязаны выяснить, что представляют собой различные предметы и нравится ли вам их математический "стиль": например, являетесь ли вы "калькулятором” или “концептуализатором”; мыслите ли вы формулами или картинками; насколько "широким", по вашему мнению, будет ваш путь как математика и т.д. Плюс вы сможете присмотреться к преподавателям и обдумать вашу потенциальную совместимость с ними в плане научного руководства. #выборнаучногоруководителя
2. Посещайте семинары. Многие студенты избегают семинаров, вероятно, потому, что не имеют представления о том, что означают заявленные названия, не слышали о докладчиках, думают, что быстро потеряются, и вообще считают, что семинары предназначены для преподавателей. Это всё ошибки!
Посещая семинары, вы постепенно узнаете о том, что происходит в математике "снаружи": вы познакомитесь с множеством различных областей современных исследований и сможете построить ментальную карту того, что люди изучают в настоящее время. Через некоторое время названия семинаров начнут что-то значить для вас!
Вы столкнётесь со множеством "нейм дроппингов" и узнаете, чьи работы вам следует просмотреть, чтобы узнать больше о тех или иных областях. Вам необходимо знать все это, чтобы в конечном итоге принять взвешенное решение о том, в какой области вы хотите работать.
Семинары на самом деле ориентированы на студентов не меньше, чем на преподавателей — зачастую преподавателям было бы эффективнее просто поговорить с приглашённым докладчиком с глазу на глаз, если бы единственной целью визита было услышать доказательство его/её последней теоремы.
Это действительно правда, что когда вы только начинаете ходить на семинары, вы в основном теряетесь:
Я почти ничего не понял из многочисленных семинаров по экзотическим теориям когомологий, которые я посетил в свой первый семестр. Но, по крайней мере, благодаря лояльному посещению я познакомился с преподавателями и докладчиками и почувствовал себя принятым "топологом".
Это чувство никогда не исчезает полностью! Однако все приличные докладчики стараются начинать с уровня, понятного всем, и постепенно повышать темп. Когда в (скажем) последние пятнадцать минут они действительно пытаются объяснить свое доказательство, разумно ожидать, что немногие люди, незнакомые с этой областью, все еще следят за всеми деталями, если вообще следят. Но дело в том, что объем, за которым вы способны следить, будет увеличиваться тем больше, чем больше вы посещаете семинары — так что лучше начать как можно раньше. Более того, лекторам нравится, когда люди задают вопросы (чтобы почувствовать, что их действительно слушают, а также чтобы получить удовольствие от ответов!), поэтому не бойтесь перебивать. #коммуникация
Еще один неочевидный момент заключается в том, что лекционные курсы по своей природе построены так, чтобы быть как можно более линейными: упорядоченная последовательность определения-теоремы-доказательства является нормой (с, хочется надеяться, некоторой мотивацией!).
На семинаре вы увидите "настоящую" математику: человек начинает с вопроса, проблемы или примера; объясняет, что о нем известно; описывает (иногда несколько различных попыток) решение; перечисляет оставшиеся без ответа вопросы или новые проблемы, возникшие в результате работы.
Это органическая, живая, грубая математика; семинар обычно ближе к математическому разговору, чем к чтению из учебника. #обучениедвижимоевопросами
3. Составьте ментальную карту того, что ещё предстоит изучить. Поймите, чего вы не знаете и что знаете. Речь идёт о вещах двух типов:
а) математические понятия/идеи
б) академические пласты деятельности.
#наведениемостов
Вот примеры второго типа: обучение математическому общению (с товарищами и преподавателями), решению задач, эффективному чтению статей, ясному письму и выступлению с докладами, поиск научного руководителя, поиск темы (направления) научной работы, поиск конкретной задачи для исследования, исследовательский процесс.
Джастин Робертс
❤4
Forwarded from Студенческий семинар по маломерной топологии
Гладкие многообразия и гомотопические группы сфер
Важным алгебраическим инвариантом топологического пространства X является множество π_n(X) гомотопических классов непрерывных отображений n-мерной сферы S^n в X. Это множество обладает естественной структурой группы и называется n-ой гомотопической группой пространства X.
Оказывается, что в случае, когда пространство X само является сферой, гомотопические группы тесно связаны с совсем другим разделом топологии: дифференциальной топологией, изучающей гладкие многообразия и их гладкие отображения. Я расскажу про конструкцию Л. С. Понтрягина, связывающую группу π_{n+k}(S^n) с k-мерными гладкими подмногообразиями в (n+k)-мерном векторном пространстве, снабжёнными дополнительной структурой. В середине прошлого века эта конструкция позволила вычислить π_{n+k}(S^n) для k≤3. Я расскажу про вычисления для k=0,1.
Материалы
▪️Видеозапись (продолжительность: 5 часов)
Программа
1. Гомотопические группы топологического пространства
2. Гладкие многообразия и гладкие отображения. Касательное и нормальное расслоения
3. Оснащённые многообразия и их связь с гомотопическими группами сфер
4. Гомотопическая классификация отображений n-мерных многообразий в n-мерную сферу. Степень отображения
5. Гомотопическая классификация отображений (n+1)-мерной сферы в n-мерную сферу
Литература
▪️Л. С. Понтрягин. Гладкие многообразия и их применения в теории гомотопий.
Пререквизиты
Для понимания курса необходимо знакомство с следующими понятиями: топологические пространства и непрерывные отображения, n-мерное векторное пространство, дифференцируемые функции нескольких переменных.
Сборник материалов по маломерной топологии: ссылка
Важным алгебраическим инвариантом топологического пространства X является множество π_n(X) гомотопических классов непрерывных отображений n-мерной сферы S^n в X. Это множество обладает естественной структурой группы и называется n-ой гомотопической группой пространства X.
Оказывается, что в случае, когда пространство X само является сферой, гомотопические группы тесно связаны с совсем другим разделом топологии: дифференциальной топологией, изучающей гладкие многообразия и их гладкие отображения. Я расскажу про конструкцию Л. С. Понтрягина, связывающую группу π_{n+k}(S^n) с k-мерными гладкими подмногообразиями в (n+k)-мерном векторном пространстве, снабжёнными дополнительной структурой. В середине прошлого века эта конструкция позволила вычислить π_{n+k}(S^n) для k≤3. Я расскажу про вычисления для k=0,1.
Материалы
▪️Видеозапись (продолжительность: 5 часов)
Программа
1. Гомотопические группы топологического пространства
2. Гладкие многообразия и гладкие отображения. Касательное и нормальное расслоения
3. Оснащённые многообразия и их связь с гомотопическими группами сфер
4. Гомотопическая классификация отображений n-мерных многообразий в n-мерную сферу. Степень отображения
5. Гомотопическая классификация отображений (n+1)-мерной сферы в n-мерную сферу
Литература
▪️Л. С. Понтрягин. Гладкие многообразия и их применения в теории гомотопий.
Пререквизиты
Для понимания курса необходимо знакомство с следующими понятиями: топологические пространства и непрерывные отображения, n-мерное векторное пространство, дифференцируемые функции нескольких переменных.
Сборник материалов по маломерной топологии: ссылка
YouTube
Лекция 1 | Гладкие многообразия и гомотопические группы сфер | Марина Прохорова
Важным алгебраическим инвариантом топологического пространства X является множество π_n(X) гомотопических классов непрерывных отображений n-мерной сферы S^n (два отображения считаются эквивалентными, если их можно непрерывно продеформировать одно в другое).…
❤🔥4🔥4
Media is too big
VIEW IN TELEGRAM
Руководство для новичков: как выбрать оптимальный ИИ-инструмент для решения ваших задач
00:00:00 Введение
00:02:54 Что под капотом у ChatGPT
00:13:12 Примеры взаимодействия с LLM
00:18:03 Обращайте внимание на разные модели
00:20:00 Ценообразование: как не переплачивать
00:22:54 Ризонеры (thinking models): когда и как их использовать
00:31:00 Инструмент "web search"
00:42:04 Инструмент "deep research"
00:50:57 Загрузка файлов
00:59:00 Использование python interpreter
01:04:35 Анализ данных: изображения и графики
01:09:00 Claude Artifacts
01:14:02 Cursor: Composer, написание кода
01:22:28 Аудио/речь: ввод и вывод
01:27:37 Что такое advanced voice mode (true audio inside the model)
01:37:09 NotebookLM и генерация подкастов
01:40:20 Image input: OCR
01:47:02 Image output: DALL-E, Ideogram, etc.
01:49:14 Video input
01:52:23 Video output: Sora, Veo 2, etc
01:53:29 Память в ChatGPT
01:58:38 Кастомные GPTs
02:06:30 Выводы
(оригинал) via https://yangx.top/data_secrets/6292
00:00:00 Введение
00:02:54 Что под капотом у ChatGPT
00:13:12 Примеры взаимодействия с LLM
00:18:03 Обращайте внимание на разные модели
00:20:00 Ценообразование: как не переплачивать
00:22:54 Ризонеры (thinking models): когда и как их использовать
00:31:00 Инструмент "web search"
00:42:04 Инструмент "deep research"
00:50:57 Загрузка файлов
00:59:00 Использование python interpreter
01:04:35 Анализ данных: изображения и графики
01:09:00 Claude Artifacts
01:14:02 Cursor: Composer, написание кода
01:22:28 Аудио/речь: ввод и вывод
01:27:37 Что такое advanced voice mode (true audio inside the model)
01:37:09 NotebookLM и генерация подкастов
01:40:20 Image input: OCR
01:47:02 Image output: DALL-E, Ideogram, etc.
01:49:14 Video input
01:52:23 Video output: Sora, Veo 2, etc
01:53:29 Память в ChatGPT
01:58:38 Кастомные GPTs
02:06:30 Выводы
(оригинал) via https://yangx.top/data_secrets/6292
❤2✍2❤🔥2💊2
Forwarded from Поток слов
Media is too big
VIEW IN TELEGRAM
Правила погружения в язык на начальном этапе
00:23 Когда слушаете, не повторяйте слова вслух, а думайте о них про себя, осмысляя и переваривая сами понятия и образы
01:00 Не старайтесь заучивать/запоминать отдельные слова, а расслабляйтесь и позвольте им лишь мелькать в вашем сознании, концентрируйтесь на контексте
01:39 Не переводите слова, а концентрируйтесь на образах, которые они вызывают
02:02 Не беспокойтесь, если не понимаете значения отдельных слов, а старайтесь уловить общий смысл и тренируйте толерантность к неопределённости
02:29 Не конспектируйте
02:56 Не используйте словари
03:25 Отбросьте скучные материалы и ищите то, что вам интересно
03:51 Отбросьте слишком сложные материалы и ищите то, что соответствует вашему уровню
04:20 Не используйте субтитры
04:38 Погружайтесь в контент, развлекайтесь и наслаждайтесь!
Итог: сфокусируйтесь на погружении в интересный и доступный вам материал, стараясь понять общий смысл (источник)
00:00 Вы хотите улучшить свойиспанский*вставьте свой любимый язык*? Я расскажу вещи, которые не стоит делать, и вещи, которые стоит делать
00:23 Когда слушаете, не повторяйте слова вслух, а думайте о них про себя, осмысляя и переваривая сами понятия и образы
01:00 Не старайтесь заучивать/запоминать отдельные слова, а расслабляйтесь и позвольте им лишь мелькать в вашем сознании, концентрируйтесь на контексте
01:39 Не переводите слова, а концентрируйтесь на образах, которые они вызывают
02:02 Не беспокойтесь, если не понимаете значения отдельных слов, а старайтесь уловить общий смысл и тренируйте толерантность к неопределённости
02:29 Не конспектируйте
02:56 Не используйте словари
03:25 Отбросьте скучные материалы и ищите то, что вам интересно
03:51 Отбросьте слишком сложные материалы и ищите то, что соответствует вашему уровню
04:20 Не используйте субтитры
04:38 Погружайтесь в контент, развлекайтесь и наслаждайтесь!
Итог: сфокусируйтесь на погружении в интересный и доступный вам материал, стараясь понять общий смысл (источник)
❤5👍3🗿2 1
Суть динамики 1: движение и детерминизм
00:00 Математические модели физических процессов
08:40 Неопределённость и детерминизм
10:11 Движение небесных тел
(источник + конспект)
00:00 Математические модели физических процессов
08:40 Неопределённость и детерминизм
10:11 Движение небесных тел
(источник + конспект)
YouTube
Хаос 1. Движение и детерминизм. Панта Рей
«Всё течет, всё движется».Так начинается первая глава «Хаоса», напоминающая нам основные идеи философа Гераклита Эфесского, который жил в конце в VI века до нашей эры. Бытие постоянно эволюционирует, вещи эфемерны, всё находится в непрерывном движении, всё…
👍4
Суть динамики 2: векторные поля
00:00 Дифференциальное и интегральное исчисление
05:00 Траектории векторного поля и теорема Коши-Липшица
09:10 Чувствительность к начальным условиям
(источник + конспект)
00:00 Дифференциальное и интегральное исчисление
05:00 Траектории векторного поля и теорема Коши-Липшица
09:10 Чувствительность к начальным условиям
(источник + конспект)
YouTube
Хаос 2. Векторные поля. Гонка Лего
В конце 17 века, Готфрид Вильгельм Лейбниц (1646—1716) и Исаак Ньютон (1643—1727), независимо друг от друга, изобрели великолепный математический инструмент: исчисление бесконечно малых или дифференциальное и интегральное исчисление. Это — очень эффективный…
👍4
Суть динамики 3: механика
00:00 От Аристотеля до Ньютона и Эйнштейна
07:27 Траектории движения небесных тел
(источник + конспект)
00:00 От Аристотеля до Ньютона и Эйнштейна
07:27 Траектории движения небесных тел
(источник + конспект)
YouTube
Хаос 3. Механика. Яблоко и Луна
В физике долгое время преобладали идеи Аристотеля. Третья глава фильма начинается с их напоминания: «У каждого объекта есть своё место, и если мы сдвинем его, он будет пытаться вернуться к нему... Всё, что нас окружает, стремится к своему естественному равновесию.…