Gentleminds
104 subscribers
1 photo
1 video
2 files
176 links
Админы канала стараются постить интересные новости и статьи про дипленинг и не только, а так же кратко их описывать.
Наши сайты:
gentleminds.io
pozus.io
加入频道
Channel photo updated
Братишка, я тебе статеек принёс
Тут ребята применили обратный РЛ, чтобы узнать мотивации червей (не дождевых червей, а Caenorhabditis elegans). Ну то есть как обычно: награда -> стратегия, а тут посчитали что стратегия у этих червей и так оптимальная, поэтому интересно посмотреть что там за награды #reinforcementlearning
подоспел свежий фреймворк для #reinforcementlearning от фейсбука, типа очень гибкий и быстрый, позволяет запускать среды пачками и проч. https://github.com/facebookresearch/ELF
Forwarded from Brodetskyi. Tech, VC, Startups (A B)
Стартап Mighty AI помогает производителям беспилотных машин разрабатывать системы компьютерного зрения. Чтобы научить машину правильно видеть дорогу и окружающие объекты, разработчикам нужны большие массивы размеченных данных, то есть кадров с дороги, на которых всё размечено и подписано - машины, разметка, дорожные знаки, пешеходы, грузовики, здания, небо. Для этого у Mighty AI есть армия добровольцев. 200 тысяч пользователей приложения Mighty AI получают в нем задания в игровой форме - обвести на фото людей, машины, деревья и прочие объекты, всего 60 типов объектов. Задания небольшие, по десять минут. За их выполнение пользователи получают баллы, новые уровни и прочую геймификацию. Есть и денежные награды, но чисто символические - одна из пользовательниц рассказывает, что за год заработала в приложении всего $300. Фактически, это полубесплатный краудсорсинг, этакий халявный Mechanical Turk (платформа, где люди делают подобную неавтоматизируемую работу за небольшие деньги). Гениальная модель - люди практически бесплатно создают для компании продукт, который она потом продаёт автопроизводителям за немалые деньги. Вот она, новая цифровая экономика!

https://vimeo.com/207960864
https://www.wired.com/story/mighty-ai-training-self-driving-cars/

Что видят беспилотные машины и с какими проблемами сталкиваются их разработчики: https://yangx.top/brodetsky/664

Как Uber с помощью психологических трюков заставляет водителей работать себе в ущерб: https://yangx.top/brodetsky/764
namara.io - платформа агрегирующая открытые данные, предоставленные, в основном, правительственными организациями США. Приятный интерфейс, мощный API.
http://ndres.me/kaggle-past-solutions/
Список решений прошедших соревнований
Нейросеть проанализировала 14 часов выступлений Барака Обамы и создала модель его мимики и движений головы. Теперь компьютерный Барак Обама любой текст произносит как свой и выглядит при этом довольно натурально.
И несмотря на то, что разработка чисто научная и служит демонстрацией современных технологий, видится, что это открывает огромное поле для видеофальсификаций - когда тебе показывают то, что человек на самом деле не говорил.
Становится немного не по себе от того, что скоро уже нельзя будет верить собственным глазам

http://tehnot.com/nejroset-sozdala-poddelnogo-obamu/
https://arxiv.org/pdf/1707.04585.pdf
The Reversible Residual Network: Backpropagation Without Storing Activations
Deep residual networks (ResNets) have significantly pushed forward the state-of-the-art on image classification, increasing in performance as networks grow both deeper and wider. However, memory consumption becomes a bottleneck, as one needs to store the activations in order to calculate gradients using backpropagation. We present the Reversible Residual Network (RevNet), a variant of ResNets where each layer's activations can be reconstructed exactly from the next layer's. Therefore, the activations for most layers need not be stored in memory during backpropagation. We demonstrate the effectiveness of RevNets on CIFAR-10, CIFAR-100, and ImageNet, establishing nearly identical classification accuracy to equally-sized ResNets, even though the activation storage requirements are independent of depth.