Бот поможет решать любые математические задачи (и не только), писать код и объяснять сложные вещи, простым языком.
Ссылка: @Chatgpturbobot
Please open Telegram to view this post
VIEW IN TELEGRAM
Основная математика для науки о данных
https://www.kdnuggets.com/2022/06/essential-math-data-science-eigenvectors-application-pca.html
@data_analysis_ml
https://www.kdnuggets.com/2022/06/essential-math-data-science-eigenvectors-application-pca.html
@data_analysis_ml
KDnuggets
Essential Math for Data Science: Eigenvectors and Application to PCA - KDnuggets
In this article, you’ll learn about the eigendecomposition of a matrix.
👍2
🌏 Использование Redis для работы с геоданными
Работа с геопространственными данными заведомо сложная задача, хотя бы потому что широта и долгота это числа с плавающей запятой и они должны быть очень высокоточными. К тому же, казалось бы, широта и долгота могут быть представлены в виде сетки, но на самом деле нет, не могут, просто потому что Земля не плоская, а математика - это сложная наука.
➡️ Читать дальше
↪️ Redis for Geospatial Data whitepaper
⚙️ Запуск Redis в Google Colab Python
@data_math
Работа с геопространственными данными заведомо сложная задача, хотя бы потому что широта и долгота это числа с плавающей запятой и они должны быть очень высокоточными. К тому же, казалось бы, широта и долгота могут быть представлены в виде сетки, но на самом деле нет, не могут, просто потому что Земля не плоская, а математика - это сложная наука.
➡️ Читать дальше
↪️ Redis for Geospatial Data whitepaper
⚙️ Запуск Redis в Google Colab Python
@data_math
👍4
Если вы хотите всерьез заняться машинным обучением и анализом данных, без математики вам точно не обойтись. Но какие именно разделы вам понадобятся и как подступиться к ним, не имея опыта? Мы попросили Леонида Иосипоя, академического руководителя Центра непрерывного образования ФКН ВШЭ, составить список книг, которые помогут изучить математику с любым уровнем подготовки.
@data_math
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4
Если не знаешь с чего начать изучение Data Science, не знаешь в какую сторону двигаться или как улучшить свои навыки и нет желания отдавать большие деньги за курсы, которые непонятно что дадут — эта подборка для тебя.
Курсы упорядочены по степени необходимости, начиная с базовых знаний, без которых будет тяжело даваться дальнейшее изучение (линейная алгебра, статистика, базовое знание python и т.д.), переходя к более сложным.
Оставил только самые ценные, на мой взгляд, курсы.
Структура курсов:
- Линейная алгебра и дискретная математика.
- Статистика и теория вероятностей.
- Python, SQL, R.
- Машинное обучение.
- Алгоритмы и структуры данных.
- Нейронные сети и Deep learning.
@data_math
Please open Telegram to view this post
VIEW IN TELEGRAM
Для начала позволю себе заметить, что в интернете есть много качественного технического контента, посвященного оцениванию моделей. Такие метрики, как F1-score (гармоническое среднее), MSE (средняя квадратическая ошибка), MAE (среднее абсолютное отклонение), Huber Loss (функция потерь Хьюбера), precision (точность), recall (полнота), cross-entropy loss (потери перекрестной энтропии) и многие другие, детально описаны на различных платформах. Однако эти метрики обычно фокусируются на подгонке модели к данным, а не на оптимизации ее для конкретного бизнеса.
Чего зачастую не хватает, так это инструментов экономического анализа для оптимизации полезности модели. Полезность определяется просто как удовольствие или ценность, которые клиент может получить от услуги — в данном случае от модели МО.
Хотя эта концепция не преподается будущим специалистам МО, я уверен: экономический анализ и оценка полезности имеют большое значение для создания практичных и долговечных моделей в реальном мире. Пока все заинтересованные стороны (технические и нетехнические работники) совместно не создадут экономический слой МО-модели, бизнес-ценность и предельную полезность машинного обучения можно считать неопределенными.
Примечание. Эта публикация предназначена для технических МО-специалистов, а также для менеджеров по продуктам и менее технически подготовленных заинтересованных лиц, работающих с ИИ-продуктами. Здесь будет немного математики, но в заключительный раздел включены высокоэффективные концептуальные шаги.
@data_math
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4