Forwarded from Machinelearning
Hierarchical Reasoning Model, (HRM) - рекуррентная архитектура, которая черпает вдохновение в принципах работы человеческого мозга. В ее основе лежат 2 взаимозависимых рекуррентных модуля:
Эта структура дает модели достигать вычислительной глубины, необходимой для сложных рассуждений, при этом сохраняя стабильность и эффективность во время обучения, чего так не хватает стандартным трансформерам.
Процесс кардинально отличается от того, что происходит в обычных рекуррентных сетях, которые склонны к преждевременной сходимости, когда их скрытое состояние быстро стабилизируется, и дальнейшие вычисления практически прекращаются. В HRM все иначе:
Таким образом, вычислительный путь низкоуровневого модуля перезапускается, направляя его к новой точке локального равновесия. Механизм не дает системе застрять и позволяет ей последовательно выполнять множество различных, но взаимосвязанных этапов решения, выстраивая длинные логические цепочки.
Тестовая модель HRM с 27 млн. параметров, обученная всего на 1000 примерах без какого-либо претрейна или CoT-пар, показала неожиданно высокие результаты .
На задачах, требующих глубокого поиска и перебора вариантов ( Sudoku-Extreme ) и поиск оптимального пути ( Maze 30x30 ), HRM достигла почти идеальной точности, а вот CoT-методы полностью провалились с результатом 0%.
На бенчмарке ARC-AGI-1, HRM показывает точность в 40.3%. Для сравнения, o3-mini-high показала 34.5%, а Claude 3.7 с контекстом 8K - 21.2%.
@ai_machinelearning_big_data
#AI #ML #HRM #SapientInc
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤8🔥6🥰2👍1🤔1
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
DeepMind выпустили Perch 2.0 — компактную supervised-модель для биоакустики.
Без миллиардов параметров, без сложного self-supervised обучения — просто аккуратная модель, которая побила все бенчмарки и уже работает в полевых исследованиях.
🌱 Почему это важно
Звуки природы — это источник данных о биоразнообразии.
По аудиозаписям можно понять:
- какие животные живут в лесу,
- сколько их,
- размножаются ли они,
- не вытесняются ли они человеком.
Но расшифровка аудио — адский труд: в одном часе записи из тропиков десятки накладывающихся голосов.
Perch 2.0 — универсальный эмбеддер для звуков животных.
Берёт 5 секунд аудио → выдаёт вектор, с которым можно:
- находить похожие записи,
- кластеризовать звуки,
- обучать простой классификатор для новых видов (few-shot).
⚡ Работает без GPU и без дообучения.
🛠 Архитектура
- Основa: EfficientNet-B3 (12M параметров).
- Три головы:
1. Классификация ~15k видов.
2. Прототипная — создаёт семантические логиты для distillation.
3. Source prediction — угадывает источник записи.
- Обучение в два шага:
1. Прототипная голова учится сама.
2. Её логиты становятся soft-label’ами для основной (**self-distillation**).
📊 Результаты
- SOTA на BirdSet и BEANS (ROC-AUC, mAP).
- Отличная переносимость на морских данных (киты, дельфины), которых почти не было в тренировке.
- Всё это — без fine-tuning, только фиксированные эмбеддинги.
Главный вывод
Perch 2.0 показывает, что:
могут быть важнее, чем «бесконечные параметры» и сложные LLM.
🌍 Что это меняет
- Биологам — быстрый анализ джунглей Бразилии или рифов без написания своих моделей.
- ML-инженерам — наглядный пример, как обучать компактные сети без потери качества.
- Исследователям — напоминание: не всегда нужен GPT-4, чтобы сделать полезный инструмент.
@ai_machinelearning_big_data
#DeepMind #AI #Bioacoustics #MachineLearning #Perch #Ecology
Please open Telegram to view this post
VIEW IN TELEGRAM
❤11👍6