EasyData
954 subscribers
152 photos
10 videos
22 files
80 links
Добро пожаловать!
Меня зовут Мария Жарова, и это мой блог про науку о данных

Лайфхаки из будней MLщика, полезности по Data Science и ответы на вопросы, которые волнуют новичков и не только🌝

Автор @NaNCat
加入频道
Привет, друзья!
Пришло время подводить итоги прошлых задачек для разминки по Python. Ниже разбор правильных ответов⚠️

1.
print(magic_func(25)) # [50]
print(magic_func(30)) # [50, 55]

Причина в том, что аргумент lst=[] - изменяемый объект. Он сохраняется между вызовами функции. Поэтому при втором вызове к списку добавляется второй элемент.

2.
print(extend_list(1)) # [1]
print(extend_list(2)) # [1, 2]
print(extend_list(3, [])) # [3]
print(extend_list(4)) # [1, 2, 4]

Демонстрация того же эффекта, что и в прошлом задании: используем изменяемый аргумент по умолчанию - список lst. Он сохраняет своё состояние между вызовами, если не передать другой. В третьем вызове передан новый список, поэтому результат уже не связан с предыдущими:)

3.
d = {1: 1, 1.0: 1.0, '1': '1', True: True}
print(d) # {1: True, '1': '1'}

Ключи 1, 1.0 и True считаются равными в словаре, потому что 1 == 1.0 == True (можете проверить это отдельно). Поэтому остаётся последний по порядку ключ из этой группы (True), и он перезаписывает предыдущие.

4.
print(tricky_or([], 'fallback')) # 'fallback'
print(tricky_or({}, 0)) # 0
print(tricky_or('', None)) # None

Оператор or возвращает первое "истинное" значение или последнее, если все ложные. [], {}, '' считаются ложными, 'fallback' - истинное, 0 и None - тоже ложные, но 0 возвращается, потому что он второй аргумент. По аналогии можете подумать, как ведет себя в подобных ситуациях and.

5.
print(x == y) # True
print(x is y) # False

== сравнивает значения, по этому принципу списки равны. is сравнивает идентичность объектов - а у нас два разных списка в памяти, находящихся по разным адресам.

6.
a = 256
b = 256
print(a is b) # True

a = 257
b = 257
print(a is b) # False

Числа от -5 до 256 кэшируются в Python, и переменные с такими значениями могут ссылаться на один и тот же объект. Значения вне этого диапазона не кэшируются, поэтому a is b даёт False.

Кто верно догадался во всех задачах - ставьте 😇

Успехов в диалогах с питоном!🐍

#python@data_easy
9👍4😇1
Привет, друзья!

Сегодня поговорим про Numba - инструмент, который превращает обычный Python-код в "почти C" по скорости🏃‍♂️

Numba - это JIT-компилятор (Just-In-Time) для Python. Если вкратце, то он анализирует функции и компилирует их в машинный код прямо во время исполнения. То есть, вместо интерпретируемого Python код исполняется как скомпилированный.

Воспользоваться возможностями Numba крайне легко - нужно просто добавить декоратор @njit к функции, и всё! 🧑‍💻

@njit
def sigmoid_numba(x):
return 1 / (1 + np.exp(-x))


Но пара нюансов всё же есть:
➡️ Во-первых, не все операции могут быть ускорены таким способом. Общий рецепт таков: "чем проще и численно интенсивнее функция, тем лучше". Вот несколько типичных примеров, которые хороши для Numba:
1. численные циклы (циклы for, while)
2. операции с массивами numpy
3. алгоритмы оптимизации, матричные вычисления
4. генерация чисел и математические функции (sin, exp, sqrt, и т.д.)
5. фильтрация, агрегация и другие различные манипуляции над массивами
6. простые симуляции (например, метод Монте-Карло)

➡️ А во-вторых, при первом запуске функция с Numba может работать даже медленнее обычной Python-версии🙂 Всё потому, что в первый раз Numba не просто выполняет код, а сначала компилирует его в машинный код - и это занимает время. Но уже со второго вызова скомпилированный вариант готов и работает в разы быстрее, как настоящий нативный код.

А насколько быстрым получается код с добавлением Numba - смотрите на скринах:) Замеры проведены на втором запуске😉

Документация библиотеки +:
➡️ с список Python-операций, которые могут быть ускорены
➡️ с аналогичный список для Numpy-функций

Хорошей недели и гармоничных распределений! ☀️

#python@data_easy
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥159👍5