Forwarded from Machinelearning
Глубокие исследовательские агенты — не просто чат‑боты, а полноценные ИИ‑ассистенты, способные искать информацию, взаимодействовать с инструментами, планировать и писать отчёты. Ниже — 10 мощных open‑source проектов, которые уже можно протестировать:
1. DeerFlow — модульная система от Bytedance: DeerFlow — open‑source фреймворк от Bytedance для создания модульных LLM-агентов.
Поддерживает:
- планирование действий,
- анализ кода,
- генерацию отчётов (включая Text-to-Speech),
- адаптивную интеграцию инструментов.
Создан для исследований, автоматизации и построения сложных агентных пайплайнов.
https://github.com/bytedance/deer-flow
2. Alita — самообучающийся агент с поддержкой Model Context Protocols (MCP), всё в одном модуле. Alita — агент, который сам придумывает, как ему расширить себя, не полагаясь на заранее написанные сценарии, и уже демонстрирует топовые результаты на сложных тестах.
https://github.com/CharlesQ9/Alita
3. WebThinker — автономный веб‑поиск с логикой "думай‑ищи‑пиши", RL‑обучением и глубокой навигацией
https://github.com/RUC-NLPIR/WebThinker
4. SimpleDeepSearcher — это лёгкий, но эффективный open‑source фреймворк от RUCAIBox, предназначенный для автономного веб-поиска через импровизированные многотуровые сессии:
- Использует Supervised Fine‑Tuning (SFT) вместо сложного RL, что значительно упрощает обучение и снижает вычислительные затраты
- Генерирует реалистичные траектории поиска и рассуждений, симулируя поведение пользователя в живом поисковом окружении .
- Критически отбирает данные по нескольким критериям качества: разнообразие запросов, сложность, структура ответов
5. AgenticSeek — приватный on‑device ассистент с выбором эксперта под задачу и голосовым управлением
https://github.com/Fosowl/agenticSeek
6. Suna — универсальный ассистент: браузер, CLI, работа с файлами, API, деплой
https://github.com/kortix-ai/suna
7. DeepResearcher — это комплексный open-source фреймворк от GAIR‑NLP, предназначенный для обучения LLM‑агентов, способных проводить глубокие исследования в автономном режиме, взаимодействуя с вебом. Использует несколько агентов‑браузеров, которые совместно исследуют веб и обрабатывают информацию
https://github.com/GAIR-NLP/DeepResearcher
8. Search‑R1 — агент на PPO/GRPO с поддержкой LLaMA3, Qwen2.5 и кастомных поисковиков. Агент учится эффективному циклу «думай — ищи — думай — отвечай» через RL, достигая важных улучшений в точности ответов и эффективности поиска.
https://github.com/PeterGriffinJin/Search-R1
9. ReCall — это фреймворк на основе RL, который учит LLM "должным образом" вызывать и комбинировать инструменты, используя сгенерированные задачи, без необходимости вручную собирать примеры вызовов — и всё это в открытом доступе.
https://github.com/Agent-RL/ReCall
10. OWL — мультиагентная система на CAMEL‑AI для динамического взаимодействия между агентами
https://github.com/camel-ai/owl
Агенты умеют планировать, взаимодействовать с браузером, запускать скрипты, интегрироваться с API и работать автономно.
Всё проекты — с открытым кодом. Можно изучить, собрать и доработать под свои задачи.
@ai_machinelearning_big_data
#ml #rl #aiagents #ai #agents
Please open Telegram to view this post
VIEW IN TELEGRAM
❤13👍6🔥3
🕸️ Chat4Data — расширение, которое превращает веб-скрапинг в диалог
Вместо кода и настроек — просто говоришь, что хочешь, и AI собирает структурированные данные с сайта.
Что умеет Chat4Data:
🔹 Собирает данные “на слух”
Опиши нужную таблицу или список — AI сам найдёт, распарсит и вставит в таблицу. Не нравится результат? Переспроси. Без кода, без боли.
🔹 Обходит все страницы сам
Автоматически кликает “Следующая”, грузит подгружаемые списки и собирает всё — без твоего участия.
🔹 Запускается за 3 клика
AI сам определяет, какие данные ценные, предлагает их — тебе остаётся только подтвердить. Быстро, как в Telegram-боте.
🔹 Не тратит токены на скрапинг
Анализ страницы — на AI, но сами данные забираются без токенов. В бета-версии дают 1 миллион токенов на другие задачи.
🔹 Скоро: скрапинг подстраниц, интерактив, интеграции...
📎 https://chat4data.ai
#ai #scraping #automation #nocode #tools
Вместо кода и настроек — просто говоришь, что хочешь, и AI собирает структурированные данные с сайта.
Что умеет Chat4Data:
🔹 Собирает данные “на слух”
Опиши нужную таблицу или список — AI сам найдёт, распарсит и вставит в таблицу. Не нравится результат? Переспроси. Без кода, без боли.
🔹 Обходит все страницы сам
Автоматически кликает “Следующая”, грузит подгружаемые списки и собирает всё — без твоего участия.
🔹 Запускается за 3 клика
AI сам определяет, какие данные ценные, предлагает их — тебе остаётся только подтвердить. Быстро, как в Telegram-боте.
🔹 Не тратит токены на скрапинг
Анализ страницы — на AI, но сами данные забираются без токенов. В бета-версии дают 1 миллион токенов на другие задачи.
🔹 Скоро: скрапинг подстраниц, интерактив, интеграции...
📎 https://chat4data.ai
#ai #scraping #automation #nocode #tools
👍13🔥7❤4
Media is too big
VIEW IN TELEGRAM
🎨🚀 Tencent представили Hunyuan3D-PolyGen — новый генеративный ИИ для 3D-моделей с высоким уровнем качества
С ходу выйдет из ИИ сразу готовые для пайплайна художников и игровых студий.
Что умеет:
✅ Собственная autoregressive-сеть генерирует чистую, плотную сетку без артефактов
✅ Сложная геометрия — способна выдавать более 10 000 полигонов с высокой детализацией и стабильной структурой
✅ Гибкий экспорт — поддержка tri- и quad-мешей под разные пайплайны
🔥 Подходит для:
— геймдева
— цифрового арта
— быстрых 3д прототипов
ИИ, который реально умеет 3D.
👉 Попробовать (включайте автопереводчик)
@data_analysis_ml
#3d #Tencent #Hunyuan #genai #ai
С ходу выйдет из ИИ сразу готовые для пайплайна художников и игровых студий.
Что умеет:
✅ Собственная autoregressive-сеть генерирует чистую, плотную сетку без артефактов
✅ Сложная геометрия — способна выдавать более 10 000 полигонов с высокой детализацией и стабильной структурой
✅ Гибкий экспорт — поддержка tri- и quad-мешей под разные пайплайны
🔥 Подходит для:
— геймдева
— цифрового арта
— быстрых 3д прототипов
ИИ, который реально умеет 3D.
👉 Попробовать (включайте автопереводчик)
@data_analysis_ml
#3d #Tencent #Hunyuan #genai #ai
❤17👍9🔥5🤯1
Google DeepMind расширяет линейку своих моделей Gemma
Представлены две новинки:
✔️ T5Gemma — новая жизнь для классической архитектуры encoder-decoder от Google DeepMind
Большинство современных LLM используют архитектуру *decoder-only*, но Google решила напомнить о силе классической схемы *encoder-decoder*, особенно эффективной в задачах вроде перевода, и QA.
Это новая линейка LLM, в которой уже обученные модели Gemma 2 (decoder-only) превращаются в мощные encoder-decoder через метод адаптации. Такой подход даёт сразу два бонуса:
- сохранение знаний из Gemma 2;
- гибкость и эффективность encoder-decoder архитектуры.
Особенности:
- Обновлённая версия Gemma 2 с архитектурой encoder-decoder.
- Отличный баланс между качеством и скоростью инференса (по сравнению с decoder-only).
- Доступны чекпойнты: Small, Base, Large, XL, 2B-2B, 9B-9B, 9B-2B.
- Достигает большей точности, не жертвуя временем инференса.
- Открывает путь к “небалансным” конфигурациям, когда, например, энкодер мощный, а декодер компактный.
✔️ MedGemma — открытые мультимодальные модели для медицины от Google DeepMind
🟡 MedGemma 4B Multimodal
- 64.4% на MedQA — одна из лучших моделей в классе <8B.
- В слепом тесте: 81% отчётов по рентгенам, сгенерированных MedGemma 4B, были признаны квалифицированным рентгенологом достаточно точными для принятия медицинских решений.
- Также показывает SOTA-уровень на задачах медицинской классификации изображений.
🟢 MedGemma 27B (Text + Multimodal)
- 87.7% точности на MedQA — почти как у DeepSeek R1, но в 10 раз дешевле по инференсу.
- Конкурирует с гораздо более крупными моделями на задачах:
- Определение диагноза;
- Интерпретация ЭМК (электронных медкарт);
- Комбинированное понимание текста и изображений.
Открытые модели — можно кастомизировать, дообучать и использовать локально.
🟡 T5gemma: https://developers.googleblog.com/en/t5gemma/
🟡 MedGemma: https://research.google/blog/medgemma-our-most-capable-open-models-for-health-ai-development/
#GoogleDeepMind #ai #ml #llm #med
Представлены две новинки:
Большинство современных LLM используют архитектуру *decoder-only*, но Google решила напомнить о силе классической схемы *encoder-decoder*, особенно эффективной в задачах вроде перевода, и QA.
Это новая линейка LLM, в которой уже обученные модели Gemma 2 (decoder-only) превращаются в мощные encoder-decoder через метод адаптации. Такой подход даёт сразу два бонуса:
- сохранение знаний из Gemma 2;
- гибкость и эффективность encoder-decoder архитектуры.
Особенности:
- Обновлённая версия Gemma 2 с архитектурой encoder-decoder.
- Отличный баланс между качеством и скоростью инференса (по сравнению с decoder-only).
- Доступны чекпойнты: Small, Base, Large, XL, 2B-2B, 9B-9B, 9B-2B.
- Достигает большей точности, не жертвуя временем инференса.
- Открывает путь к “небалансным” конфигурациям, когда, например, энкодер мощный, а декодер компактный.
- 64.4% на MedQA — одна из лучших моделей в классе <8B.
- В слепом тесте: 81% отчётов по рентгенам, сгенерированных MedGemma 4B, были признаны квалифицированным рентгенологом достаточно точными для принятия медицинских решений.
- Также показывает SOTA-уровень на задачах медицинской классификации изображений.
- 87.7% точности на MedQA — почти как у DeepSeek R1, но в 10 раз дешевле по инференсу.
- Конкурирует с гораздо более крупными моделями на задачах:
- Определение диагноза;
- Интерпретация ЭМК (электронных медкарт);
- Комбинированное понимание текста и изображений.
Открытые модели — можно кастомизировать, дообучать и использовать локально.
#GoogleDeepMind #ai #ml #llm #med
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤9🔥5👍1
🍏 Apple всерьёз задумалась о покупке Mistral — Bloomberg / Марк Гурман
По информации Bloomberg, Apple серьёзно рассматривает покупку французского стартапа Mistral AI, чтобы наконец войти в ИИ-гонку.
Это очень поздний шаг — но он показывает, насколько сильно Apple отстала от OpenAI, Google и даже xAI.
Пока другие выкатывают публичные LLM, мультимодальные ассистенты и интеграции в поиске, Apple остаётся в роли наблюдателя.
📌 Почему это важно:
- Mistral — один из главных open-source игроков на рынке ИИ (выпускают мощные LLM и Mixture of Experts-модели)
- У Apple пока нет ни собственной модели, ни сильной стратегии в области ИИ
- Приобретение Mistral может стать экстренной попыткой догнать конкурентов
Если сделка состоится — это будет крупнейший AI-манёвр Apple за всё время.
#Apple #Mistral #AI #LLM #ГонкаИИ
@data_analysis_ml
По информации Bloomberg, Apple серьёзно рассматривает покупку французского стартапа Mistral AI, чтобы наконец войти в ИИ-гонку.
Это очень поздний шаг — но он показывает, насколько сильно Apple отстала от OpenAI, Google и даже xAI.
Пока другие выкатывают публичные LLM, мультимодальные ассистенты и интеграции в поиске, Apple остаётся в роли наблюдателя.
📌 Почему это важно:
- Mistral — один из главных open-source игроков на рынке ИИ (выпускают мощные LLM и Mixture of Experts-модели)
- У Apple пока нет ни собственной модели, ни сильной стратегии в области ИИ
- Приобретение Mistral может стать экстренной попыткой догнать конкурентов
Если сделка состоится — это будет крупнейший AI-манёвр Apple за всё время.
#Apple #Mistral #AI #LLM #ГонкаИИ
@data_analysis_ml
👍14❤6🔥4🤔4
🤖 Илон Маск: ИИ станет умнее любого человека — меньше чем за 2 года,
а умнее всего человечества вместе — меньше чем за 5 лет
По мнению Маска, у ИИ нет потолка — рост идёт экспоненциально, и конца этому тренду не видно.
Он прямо говорит: через несколько лет модели смогут выполнять работу целых корпораций, действуя как единая система.
📌 Почему это звучит серьёзно?
Потому что Dario Amodei, CEO Anthropic, говорит буквально то же самое — с теми же сроками.
Он ожидает, что к 2027 году появится суперинтеллект, способный управлять крупными компаниями как цифровой "мозг-конгломерат".
🔥 Если они правы — нас ждёт резкий сдвиг:
– ИИ перестаёт быть инструментом и становится экономическим субъектом
– Компании превращаются в оболочки для моделей
– Решения, стратегии, оптимизация — передаются системам ИИ
– Конкуренция меняется: человек против облачного суперинтеллекта с API
Мы приближаемся не просто к новой технологии —
а к новой форме разума, способной оперировать как корпорация, но быстрее, точнее и дешевле.
#AI #ElonMusk #Superintelligence #DarioAmodei #Anthropic #FutureOfWork #AGI
@data_analysis_ml
а умнее всего человечества вместе — меньше чем за 5 лет
По мнению Маска, у ИИ нет потолка — рост идёт экспоненциально, и конца этому тренду не видно.
Он прямо говорит: через несколько лет модели смогут выполнять работу целых корпораций, действуя как единая система.
📌 Почему это звучит серьёзно?
Потому что Dario Amodei, CEO Anthropic, говорит буквально то же самое — с теми же сроками.
Он ожидает, что к 2027 году появится суперинтеллект, способный управлять крупными компаниями как цифровой "мозг-конгломерат".
🔥 Если они правы — нас ждёт резкий сдвиг:
– ИИ перестаёт быть инструментом и становится экономическим субъектом
– Компании превращаются в оболочки для моделей
– Решения, стратегии, оптимизация — передаются системам ИИ
– Конкуренция меняется: человек против облачного суперинтеллекта с API
Мы приближаемся не просто к новой технологии —
а к новой форме разума, способной оперировать как корпорация, но быстрее, точнее и дешевле.
#AI #ElonMusk #Superintelligence #DarioAmodei #Anthropic #FutureOfWork #AGI
@data_analysis_ml
🤣25❤10👍8🤔5🔥4
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Google объявила о выходе в общий доступ модели для создания текстовых эмбеддингов - Gemini-Embedding-001. Она доступна разработчикам через Gemini API и Vertex AI. С момента своего экспериментального запуска модель стабильно занимает лидирующие позиции в бенчмарке MTEB и поддерживает более 100 языков.
Gemini Embedding использует технику Matryoshka Representation Learning. Она позволяет разработчикам гибко настраивать размерность выходных векторов, чтобы оптимизировать производительность и затраты на хранение. Максимальная длина входных данных составляет 2048 токенов.
Стоимость использования модели : $0.15 за 1 миллион входных токенов. Доступ к ней можно получить через Gemini API, а бесплатно протестировать - в Google AI Studio.
developers.googleblog.com
Недавно созданное подразделение по разработке AGI инициировало дискуссию о кардинальном изменении стратегии компании. Ключевая идея - отказаться от развития флагманской open-source модели Behemoth в пользу закрытой архитектуры, по аналогии с OpenAI и Google. Такой шаг стал бы серьезным философским сдвигом для компании, которая годами продвигала открытый код и завоевала признание разработчиков.
Обсуждения пока находятся на ранней стадии и требуют одобрения Марка Цукерберга. Однако сама дискуссия, начатая новой командой под руководством Александра Ванга, указывает на возможный стратегический разворот гиганта соцсетей.
nytimes.com
xAI начала развертывание новой функции «Companions» для чат-бота Grok в приложении для iOS. Обновление добавляет в интерфейс интерактивных трехмерных персонажей, цель которых - сделать общение более персонализированным и выйти за рамки текстовых ответов. На данный момент функция доступна платным подписчикам SuperGrok.
Пользователи могут выбрать одного из двух анимированных аватаров: аниме-девушку Ani или красную панду Bad Rudy. Включить их можно в меню настроек. В компании обещают позже добавить третьего персонажа.
Elon Mask в сети Х
Два выдающихся специалиста из Германии, Роланд Эйльс и Ирина Леманн, присоединились к Университету Фудань в Шанхае. Их работа была ключевой в создании атласа клеток поджелудочной железы человека и использовании ИИ для прогнозирования рисков заболеваний.
Эйльс - всемирно известный математик и биолог, руководивший крупными национальными исследовательскими проектами. Леманн - профессор в области эпигенетики, возглавлявшая несколько международных научных конференций. Супруги опубликовали более 1000 научных работ и имеют свыше 100 000 цитирований.
В Университете Фудань они присоединились к Институту интеллектуальной медицины и планируют создать совместную немецко-китайскую ИИ-лабораторию.
scmp.com
Глава Perplexity Аравинд Шринивас рассказал о планах компании начать пост-тренинг моделей Kimi от Moonshot AI. Решение было принято после внутренних тестов, которые показали, что потенциал Kimi сопоставим с GPT-4 и Claude.
Решающим фактором стало превосходство Kimi K2 в бенчмарках на программирование. В частности, в тесте SWE-bench Verified она показала результат 65.8%, значительно опередив Claude с его 50.2%.
В Perplexity рассчитывают, что дальнейшее дообучение модели усилит ее агентные возможности.
CEO Perplexity сети X
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
1❤10👍7🔥4
🔥 Бывший сотрудник OpenAI поделился откровенными впечатлениями о годе работы внутри одной из самых обсуждаемых компаний мира.
Он присоединился к команде в мае 2024, ушёл три недели назад — и решил написать личные размышления, пока всё ещё свежо в памяти.
Он подчёркивает: никаких скандалов или внутренних конфликтов — просто желание снова что-то строить с нуля. Несмотря на это, он признаёт: сложно уйти с работы, где ты видишь рождение AGI своими глазами и участвуешь в запуске Codex.
Культура OpenAI — это хаос, скорость и независимость.
Компания за год выросла с 1000 до более чем 3000 сотрудников. Почти все руководители делают совершенно другую работу, чем пару лет назад. И всё внутри строится снизу вверх: roadmap’ов не было, а идеи рождались и запускались без бюрократии.
Всё общение происходит в Slack — никаких email, почти никакого планирования. Команды могут быть хаотичны и перегружены, но часто это работает: если идея крутая, люди просто начинают делать, и вокруг появляется команда.
Руководители не мешают, а помогают — особенно в исследовательских командах. Исследователь воспринимается как мини-руководитель: выбрал интересную задачу — вперёд. Главное — не «казаться», а «делать». Политика и презентации — не в цене. Лучшие идеи побеждают.
OpenAI умеет разворачиваться на ходу. Как только появляется новая информация, стратегия может кардинально поменяться — и в этом сила. Вдохновлённый атмосферой Segment, автор признаёт: OpenAI удалось сохранить эту гибкость даже при таком масштабе.
Закрытость — часть культуры.
Из-за огромного внимания общества и прессы компания крайне аккуратно делится информацией. Многое не анонсируется даже внутри. Но при этом она остаётся самой открытой из «больших AI-лабораторий»: модели попадают в API, доступны не только корпорациям, но и отдельным пользователям.
Внимание к реальным рискам (злоупотребления, манипуляции, self-harm) — важный фокус внутри. Хоть фундаментальные угрозы (в духе "intelligence explosion") тоже обсуждаются, упор в работе на конкретные и прикладные сценарии.
Технологически OpenAI — монорепозиторий на Python, немного Rust и Go. Всё крутится на Azure, но доверяют только 2–3 сервисам. Инфраструктура напоминает ранний Facebook: всё движется быстро, дублируется, много внутренней разработки и отсутствие строгих архитектурных комитетов.
Он отдельно отметил уникальность команды Codex, с которой провёл последние 3 месяца. За 7 недель (!) они с нуля запустили продукт: с контейнерным рантаймом, fine-tuning моделей, git-интеграцией и полноценным асинхронным агентом. В ночь перед запуском они сидели до 4 утра, а утром уже нажимали на кнопку.
Codex показал: будущее программирования будет похоже на общение с ассистентом, а не набор кода строка за строкой. С момента запуска Codex сгенерировал более 630 000 pull request’ов — это десятки тысяч на каждого инженера в команде.
Несмотря на скандалы в пресе — тысячи людей, искренне верящих, что строят нечто важное. OpenAI остаётся одной из самых амбициозных организаций в мире: не только чат, не только API, но и hardware, агенты, изображения — и это ещё не всё.
📌 Читать
@data_analysis_ml
#openai #ai #ml #llm #chatgpt
Он присоединился к команде в мае 2024, ушёл три недели назад — и решил написать личные размышления, пока всё ещё свежо в памяти.
Он подчёркивает: никаких скандалов или внутренних конфликтов — просто желание снова что-то строить с нуля. Несмотря на это, он признаёт: сложно уйти с работы, где ты видишь рождение AGI своими глазами и участвуешь в запуске Codex.
Культура OpenAI — это хаос, скорость и независимость.
Компания за год выросла с 1000 до более чем 3000 сотрудников. Почти все руководители делают совершенно другую работу, чем пару лет назад. И всё внутри строится снизу вверх: roadmap’ов не было, а идеи рождались и запускались без бюрократии.
Всё общение происходит в Slack — никаких email, почти никакого планирования. Команды могут быть хаотичны и перегружены, но часто это работает: если идея крутая, люди просто начинают делать, и вокруг появляется команда.
Руководители не мешают, а помогают — особенно в исследовательских командах. Исследователь воспринимается как мини-руководитель: выбрал интересную задачу — вперёд. Главное — не «казаться», а «делать». Политика и презентации — не в цене. Лучшие идеи побеждают.
OpenAI умеет разворачиваться на ходу. Как только появляется новая информация, стратегия может кардинально поменяться — и в этом сила. Вдохновлённый атмосферой Segment, автор признаёт: OpenAI удалось сохранить эту гибкость даже при таком масштабе.
Закрытость — часть культуры.
Из-за огромного внимания общества и прессы компания крайне аккуратно делится информацией. Многое не анонсируется даже внутри. Но при этом она остаётся самой открытой из «больших AI-лабораторий»: модели попадают в API, доступны не только корпорациям, но и отдельным пользователям.
Внимание к реальным рискам (злоупотребления, манипуляции, self-harm) — важный фокус внутри. Хоть фундаментальные угрозы (в духе "intelligence explosion") тоже обсуждаются, упор в работе на конкретные и прикладные сценарии.
Технологически OpenAI — монорепозиторий на Python, немного Rust и Go. Всё крутится на Azure, но доверяют только 2–3 сервисам. Инфраструктура напоминает ранний Facebook: всё движется быстро, дублируется, много внутренней разработки и отсутствие строгих архитектурных комитетов.
Он отдельно отметил уникальность команды Codex, с которой провёл последние 3 месяца. За 7 недель (!) они с нуля запустили продукт: с контейнерным рантаймом, fine-tuning моделей, git-интеграцией и полноценным асинхронным агентом. В ночь перед запуском они сидели до 4 утра, а утром уже нажимали на кнопку.
Codex показал: будущее программирования будет похоже на общение с ассистентом, а не набор кода строка за строкой. С момента запуска Codex сгенерировал более 630 000 pull request’ов — это десятки тысяч на каждого инженера в команде.
Несмотря на скандалы в пресе — тысячи людей, искренне верящих, что строят нечто важное. OpenAI остаётся одной из самых амбициозных организаций в мире: не только чат, не только API, но и hardware, агенты, изображения — и это ещё не всё.
📌 Читать
@data_analysis_ml
#openai #ai #ml #llm #chatgpt
❤17👍10🔥6🥴1
This media is not supported in your browser
VIEW IN TELEGRAM
Не прошло и дня: эра 3D-вайфу на базе ИИ набирает обороты.
Первые open-source версии этого чуда уже на доступны на GitHub
https://github.com/Jackywine/Bella
@data_analysis_ml
#ai #ml
Первые open-source версии этого чуда уже на доступны на GitHub
https://github.com/Jackywine/Bella
@data_analysis_ml
#ai #ml
🔥12❤8👍4😱3