Когда-то давно в 2022 году мы опубликовали на Zenodo BigSolDB — крупнейший датасет (известный нам) по растворимости, содержащий 54273 значений растворимости при температурах от 243.15 до 403.15K, в котором присутствуют 138 растворителей и 830 соединений.
Чем были полезны наши данные со стороны авторов:
🔹 Дополнением внутренней базы GSK, которая ограничена их исследовательскими соединениями.
🔹 Доступом к разным температурным режимам, что улучшило предсказания при высоких температурах.
🔹 Добавлением редких растворителей, которые раньше модель предсказывала с высокой погрешностью.
Такие моменты сильно повышают мотивацию и далее делать открытые датасеты для более полной систематизации экспериментальных данных по разным химическим областям.
Please open Telegram to view this post
VIEW IN TELEGRAM
🎊Сегодня у нас наконец-то вышла статья:
Towards Accelerating the Discovery of Efficient Iridium(III) Emitters Using Novel Database and Machine Learning Based Only on Structural Formula
https://doi.org/10.1039/D5TC00305A
1. В этой статье мы собрали базу данных IrLumDB, в которой содержатся экспериментальные данные о 1287 бис-циклометалированных комлексах иридия (III) и их фотофизических свойствах (длина волны эмиссии (λmax), квантовый выход (PLQY) и время жизни).
2. На основе IrLumDB обучили XGBoost, LightGBM и Catboost предсказывать λmax и PLQY с MAE 18.26 нм и 0.13 на десятикратной кросс-валидации.
3. Протестировали работу обученных моделей на 33 синтезированных в нашей лаборатории комплексах, 12 из которых были получены для этой статьи. Комплексы были охарактеризованы с помощью ЯМР, РСА, масс-спектрометрии высокого разрешения, и частично РФА. 9 новых структур были депонированы в CCDC.
4. Сравнили на изученных нами соединениях точность предсказания длины волны эмиссии с помощью алгоритмов машинного обучения и с помощью DFT-расчетов; показали, что алгоритмы машинного обучения справляются с задачей лучше.
5. Так как нам важно искать новые комплексы с потенциально высокими квантовыми выходами, то мы разделили все комплексы на 3 класса: с низким (0-0.1), средним (0.1-0.5) и высоким PLQY (0.5-1), далее обучили классификационные модели и получили точность 72.4% на десятикратной кросс-валидации.
6. Подготовили мини-приложение IrLumDB App для того, чтобы любой исследователь смог предсказать свойства для своих комплексов. Для предсказания достаточно SMILES лигандов.
Датасет на Zenodo | IrLumDB App
📕 Journal of Materials Chemistry C (IF=5.7)
#dataset #application
Towards Accelerating the Discovery of Efficient Iridium(III) Emitters Using Novel Database and Machine Learning Based Only on Structural Formula
https://doi.org/10.1039/D5TC00305A
1. В этой статье мы собрали базу данных IrLumDB, в которой содержатся экспериментальные данные о 1287 бис-циклометалированных комлексах иридия (III) и их фотофизических свойствах (длина волны эмиссии (λmax), квантовый выход (PLQY) и время жизни).
2. На основе IrLumDB обучили XGBoost, LightGBM и Catboost предсказывать λmax и PLQY с MAE 18.26 нм и 0.13 на десятикратной кросс-валидации.
3. Протестировали работу обученных моделей на 33 синтезированных в нашей лаборатории комплексах, 12 из которых были получены для этой статьи. Комплексы были охарактеризованы с помощью ЯМР, РСА, масс-спектрометрии высокого разрешения, и частично РФА. 9 новых структур были депонированы в CCDC.
4. Сравнили на изученных нами соединениях точность предсказания длины волны эмиссии с помощью алгоритмов машинного обучения и с помощью DFT-расчетов; показали, что алгоритмы машинного обучения справляются с задачей лучше.
5. Так как нам важно искать новые комплексы с потенциально высокими квантовыми выходами, то мы разделили все комплексы на 3 класса: с низким (0-0.1), средним (0.1-0.5) и высоким PLQY (0.5-1), далее обучили классификационные модели и получили точность 72.4% на десятикратной кросс-валидации.
6. Подготовили мини-приложение IrLumDB App для того, чтобы любой исследователь смог предсказать свойства для своих комплексов. Для предсказания достаточно SMILES лигандов.
Датасет на Zenodo | IrLumDB App
#dataset #application
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM