Deep-PK: deep learning for small molecule pharmacokinetic and toxicity prediction
https://doi.org/10.1093/nar/gkae254
Нашли на просторах интернета новый сервис, который позволяет предсказывать бесплатно 64 ADMET и 9 общих свойств молекул. По заявлению авторов делает это точнее, чем предыдущие известные модели.
🔥 Ссылка на сервис: https://biosig.lab.uq.edu.au/deeppk/
📕 Nucleic Acids Research (IF=16.6)
#method
https://doi.org/10.1093/nar/gkae254
Нашли на просторах интернета новый сервис, который позволяет предсказывать бесплатно 64 ADMET и 9 общих свойств молекул. По заявлению авторов делает это точнее, чем предыдущие известные модели.
#method
Please open Telegram to view this post
VIEW IN TELEGRAM
OUP Academic
Deep-PK: deep learning for small molecule pharmacokinetic and toxicity prediction
Abstract. Evaluating pharmacokinetic properties of small molecules is considered a key feature in most drug development and high-throughput screening proce
Acquisition of absorption and fluorescence spectral data using chatbots
https://doi.org/10.1039/D4DD00255E
Гайд как быстро писать новые статьи в научных журналах:
1) Берем ChatGPT или любую другую LLM
2) Спрашиваем у него о свойствах молекулы X
3) Записываем в таблицу
✅Profit: получаем статью в журнале с IF=6.2
https://doi.org/10.1039/D4DD00255E
Гайд как быстро писать новые статьи в научных журналах:
1) Берем ChatGPT или любую другую LLM
2) Спрашиваем у него о свойствах молекулы X
3) Записываем в таблицу
✅Profit: получаем статью в журнале с IF=6.2
A generative model for inorganic materials design
https://www.nature.com/articles/s41586-025-08628-5
Сегодня в журнале Nature вышла очень интересная работа.
Microsoft представил MatterGen — новую парадигму в дизайне материалов с использованием генеративного искусственного интеллекта. MatterGen позволяет ускорить процесс разработки материалов, автоматически генерируя и оценивая потенциальные структуры с заданными свойствами.
Модель может быть настроена на создание материалов с конкретными химическими составами, симметрией или физическими характеристиками, такими как магнитная плотность, ширина запрещённой зоны и механическая прочность, используя обучающий набор из более чем 608 000 стабильных соединений из известных баз данных материалов.
Экспериментальная проверка подтвердила успешный синтез материала TaCr2O6, в точности совпадающий с предсказаниями модели.
🖥 Код доступен бесплатно на гитхабе: https://github.com/microsoft/mattergen
https://www.nature.com/articles/s41586-025-08628-5
Сегодня в журнале Nature вышла очень интересная работа.
Microsoft представил MatterGen — новую парадигму в дизайне материалов с использованием генеративного искусственного интеллекта. MatterGen позволяет ускорить процесс разработки материалов, автоматически генерируя и оценивая потенциальные структуры с заданными свойствами.
Модель может быть настроена на создание материалов с конкретными химическими составами, симметрией или физическими характеристиками, такими как магнитная плотность, ширина запрещённой зоны и механическая прочность, используя обучающий набор из более чем 608 000 стабильных соединений из известных баз данных материалов.
Экспериментальная проверка подтвердила успешный синтез материала TaCr2O6, в точности совпадающий с предсказаниями модели.
Please open Telegram to view this post
VIEW IN TELEGRAM
Hybrid nanophotonic-microfluidic sensor integrated with machine learning for operando state-of-charge monitoring in vanadium flow batteries
https://doi.org/10.1016/j.est.2025.115349
При нашем скромном участии вчера вышла работа, в которой представлен усовершенствованный метод измерения степени заряда (SoC) ванадиевых проточных батарей (VRFB) с использованием показателя преломления и машинного обучения.
Основной акцент сделан на использовании изменения показателя преломления (RI) электролитов для оценки концентрации ионов ванадия.
Разработанный сенсор основан на фотонных интегральных схемах (PIC) и микрофлюидных каналах, что обеспечивает высокую чувствительность. Система прошла тестирование на рабочих условиях батареи, показав устойчивую корреляцию между спектральными характеристиками и данными о заряде.
Используя экспериментальные данные, ML модель была обучена точно предсказывать степень заряда проточной ванадиевой батареи путем анализа спектральных характеристик.
🔗По этой ссылке статья будет доступна бесплатно в течение первых 50 дней: https://authors.elsevier.com/c/1kSYB,rUrFxfAl
📕 Journal of Energy Storage (IF=8.9)
#application
https://doi.org/10.1016/j.est.2025.115349
При нашем скромном участии вчера вышла работа, в которой представлен усовершенствованный метод измерения степени заряда (SoC) ванадиевых проточных батарей (VRFB) с использованием показателя преломления и машинного обучения.
Основной акцент сделан на использовании изменения показателя преломления (RI) электролитов для оценки концентрации ионов ванадия.
Разработанный сенсор основан на фотонных интегральных схемах (PIC) и микрофлюидных каналах, что обеспечивает высокую чувствительность. Система прошла тестирование на рабочих условиях батареи, показав устойчивую корреляцию между спектральными характеристиками и данными о заряде.
Используя экспериментальные данные, ML модель была обучена точно предсказывать степень заряда проточной ванадиевой батареи путем анализа спектральных характеристик.
🔗По этой ссылке статья будет доступна бесплатно в течение первых 50 дней: https://authors.elsevier.com/c/1kSYB,rUrFxfAl
#application
Please open Telegram to view this post
VIEW IN TELEGRAM
Когда-то давно в 2022 году мы опубликовали на Zenodo BigSolDB — крупнейший датасет (известный нам) по растворимости, содержащий 54273 значений растворимости при температурах от 243.15 до 403.15K, в котором присутствуют 138 растворителей и 830 соединений.
Чем были полезны наши данные со стороны авторов:
🔹 Дополнением внутренней базы GSK, которая ограничена их исследовательскими соединениями.
🔹 Доступом к разным температурным режимам, что улучшило предсказания при высоких температурах.
🔹 Добавлением редких растворителей, которые раньше модель предсказывала с высокой погрешностью.
Такие моменты сильно повышают мотивацию и далее делать открытые датасеты для более полной систематизации экспериментальных данных по разным химическим областям.
Please open Telegram to view this post
VIEW IN TELEGRAM
🎊Сегодня у нас наконец-то вышла статья:
Towards Accelerating the Discovery of Efficient Iridium(III) Emitters Using Novel Database and Machine Learning Based Only on Structural Formula
https://doi.org/10.1039/D5TC00305A
1. В этой статье мы собрали базу данных IrLumDB, в которой содержатся экспериментальные данные о 1287 бис-циклометалированных комлексах иридия (III) и их фотофизических свойствах (длина волны эмиссии (λmax), квантовый выход (PLQY) и время жизни).
2. На основе IrLumDB обучили XGBoost, LightGBM и Catboost предсказывать λmax и PLQY с MAE 18.26 нм и 0.13 на десятикратной кросс-валидации.
3. Протестировали работу обученных моделей на 33 синтезированных в нашей лаборатории комплексах, 12 из которых были получены для этой статьи. Комплексы были охарактеризованы с помощью ЯМР, РСА, масс-спектрометрии высокого разрешения, и частично РФА. 9 новых структур были депонированы в CCDC.
4. Сравнили на изученных нами соединениях точность предсказания длины волны эмиссии с помощью алгоритмов машинного обучения и с помощью DFT-расчетов; показали, что алгоритмы машинного обучения справляются с задачей лучше.
5. Так как нам важно искать новые комплексы с потенциально высокими квантовыми выходами, то мы разделили все комплексы на 3 класса: с низким (0-0.1), средним (0.1-0.5) и высоким PLQY (0.5-1), далее обучили классификационные модели и получили точность 72.4% на десятикратной кросс-валидации.
6. Подготовили мини-приложение IrLumDB App для того, чтобы любой исследователь смог предсказать свойства для своих комплексов. Для предсказания достаточно SMILES лигандов.
Датасет на Zenodo | IrLumDB App
📕 Journal of Materials Chemistry C (IF=5.7)
#dataset #application
Towards Accelerating the Discovery of Efficient Iridium(III) Emitters Using Novel Database and Machine Learning Based Only on Structural Formula
https://doi.org/10.1039/D5TC00305A
1. В этой статье мы собрали базу данных IrLumDB, в которой содержатся экспериментальные данные о 1287 бис-циклометалированных комлексах иридия (III) и их фотофизических свойствах (длина волны эмиссии (λmax), квантовый выход (PLQY) и время жизни).
2. На основе IrLumDB обучили XGBoost, LightGBM и Catboost предсказывать λmax и PLQY с MAE 18.26 нм и 0.13 на десятикратной кросс-валидации.
3. Протестировали работу обученных моделей на 33 синтезированных в нашей лаборатории комплексах, 12 из которых были получены для этой статьи. Комплексы были охарактеризованы с помощью ЯМР, РСА, масс-спектрометрии высокого разрешения, и частично РФА. 9 новых структур были депонированы в CCDC.
4. Сравнили на изученных нами соединениях точность предсказания длины волны эмиссии с помощью алгоритмов машинного обучения и с помощью DFT-расчетов; показали, что алгоритмы машинного обучения справляются с задачей лучше.
5. Так как нам важно искать новые комплексы с потенциально высокими квантовыми выходами, то мы разделили все комплексы на 3 класса: с низким (0-0.1), средним (0.1-0.5) и высоким PLQY (0.5-1), далее обучили классификационные модели и получили точность 72.4% на десятикратной кросс-валидации.
6. Подготовили мини-приложение IrLumDB App для того, чтобы любой исследователь смог предсказать свойства для своих комплексов. Для предсказания достаточно SMILES лигандов.
Датасет на Zenodo | IrLumDB App
#dataset #application
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM