Forwarded from Machinelearning
Xiaomi выпустила в опенсорсный релиз MiMo-7B — набор языковых моделей, созданных для решения сложных задач, от математики до генерации кода.
Несмотря на скромные 7 млрд. параметров, модель демонстрирует результаты, превосходящие 32B-конкурентов, разрушая стереотипы о зависимости качества от размера.
Создание MiMo началось с предтрейна на 25 трлн. токенов, где акцент был на повышении плотности логических паттернов.
Для этого разработчики пересмотрели обработку данных: улучшили извлечение математических формул и блоков кода из веб-страниц, добавили синтетические данные, сгенерированные топовыми ризонинг-моделями, и все это обработали уникальной стратегией смешивания.
На первых этапах доля STEM-контента достигала 70%, а на финальном — добавили синтетику и расширили контекст до 32K токенов.
Обучение с подкреплением на стадии посттренинга проводили на массиве из 130 тыс. задач, где каждая проверялась автоматически. Чтобы избежать reward hacking, использовали только rule-based награды.
Для сложных задач по программированию ввели систему частичных баллов (как на олимпиадах по информатике) - даже если решение не идеально, модель получает feedback за пройденные тесты. А чтобы RL не застревал на простых примерах, добавили ресэмплинг: 10% данных брали из пула уже решенных задач, балансируя эффективность и стабильность обучения.
Результаты бенчмарков: на LiveCodeBench v6 MiMo-7B-RL набрала 49.3%, обойдя QwQ-32B на 10 пунктов, а на AIME 2025 — 55.4%, оставив позади OpenAI o1-mini. При этом базовая версия модели уже показывала 75.2% на BBH, что выше аналогов своего класса.
⚠️ Разработчики рекомендуют использовать для локального инференса их форк vLLM , он поддерживает MTP (Multiple-Token Prediction), но и на HF Transformers инференс тоже работает.
@ai_machinelearning_big_data
#AI #ML #LLM #RL #Xiaomi #MiMo
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍2
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Ideogram представил масштабное обновление своей нейросети для генерации изображений. Версия 3.0 создаёт более фотореалистичные картинки, точнее понимает запросы и предлагает вдвое больше стилей. Теперь можно загрузить до 3-х референсов, чтобы задать стиль генерации, или выбрать готовый из библиотеки.
Новые инструменты: Magic Fill и Extend. Первый позволяет менять или добавлять элементы в готовом изображении, а второй — расширять его за рамки исходного кадра. Для разработчиков открыли API с текстовой генерацией, редактированием, заменой фона и другими функциями. Интегрировать Ideogram 3.0 можно через партнерские платформы: Picsart, Freepik, Replicate и другие.
Ideogram в X (ex-Twitter)
Midjourney тестирует новую функцию, Omni-Reference, которая позволяет тонко настраивать визуальные элементы в создаваемых изображениях. В отличие от старого Character Reference (v6), система теперь поддерживает не только персонажей, но и отдельные объекты — например, можно указать: «Добавь именно этот меч в сцену».
Omni-Reference доступен в веб-интерфейсе сервиса (перетаскивание изображения в зону «omni-reference») или в Discord через параметр
--oref
с URL. Силу влияния reference регулирует параметр --ow
(0–1000): низкие значения подходят для стилизации, а высокие — для сохранения деталей вроде лица или одежды.Midjourney в Discord
Apple совместно с Anthropic готовит обновление Xcode с интеграцией Claude Sonnet. По данным Bloomberg, внутренняя версия уже тестируется сотрудниками: разработчики могут запрашивать код через чат, инспектировать интерфейсы и исправлять ошибки с помощью ИИ. Это ускорит процессы разработки, но пока неясно, когда инструмент станет доступен публично.
Ранее Apple анонсировала Swift Assist, однако проект застопорился из-за частых галлюцинаций ИИ. Сотрудничество с Anthropic должно решить эти проблемы.
macrumors.com
Некоммерческая организация FutureHouse, поддержанная Эриком Шмидтом, запустила платформу с четырьмя ИИ-агентами: Crow, Falcon, Owl и Phoenix. Они помогают анализировать научную литературу, планировать эксперименты и искать данные в специализированных базах. По словам разработчиков, их система использует открытые научные работы и многоэтапный анализ с «прозрачной логикой».
FutureHouse предупреждает, что Phoenix, отвечающий за химические эксперименты, может выдавать некорректные результаты и призывает пользователей делиться обратной связью для доработки.
futurehouse.org
Специалисты из Пенсильванского университета представили революционный фотонный чип, способный обучать нейросети с помощью света. Технология не только ускоряет процесс в разы, но и резко снижает энергозатраты, открывая путь к полностью оптическим вычислениям. В отличие от традиционных электронных чипов, здесь данные обрабатываются световыми импульсами, а не электричеством — это позволяет выполнять сложные нелинейные операции, критичные для глубокого обучения.
Основа инновации — управление светом через специальный полупроводниковый материал. Два луча («signal» и «pump») взаимодействуют, меняя свойства материала в реальном времени. Это дает возможность перепрограммировать чип без изменения его структуры, достаточно настроить параметры «pump»-луча. В тестах система показала 97% точности на задачах с нелинейными границами решений, обойдя цифровые аналоги по эффективности.
Уже сейчас 4 оптических соединения на чипе заменяют 20 электронных, а в будущем технология может масштабироваться для обучения LLM.
scitechdaily.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7❤2🔥2
Forwarded from Machinelearning
NVIDIA представила новую модель автоматического распознавания речи (ASR) — Parakeet-tdt-0.6b-v2 c 600 млн. параметров для английского языка. Она не просто транскрибирует аудио в текст, но и распознает пунктуацию, капитализацию и временные метки с точностью до слова.
Модель устойчива к шумам и справляется даже с расшифровкой песен или чисел. Это достигнуто за счет обучения на данных, в которые включили «шумные» источники (YouTube, записи телефонных разговоров и уличные диалоги). Как отмечают авторы, RTFx-показатель равен 3380 (при батче 128), что позволяет использовать Parakeet для масштабных промышленных задач.
В основе Parakeet - гибридная архитектура. Она комбинирует скоростной кодировщик FastConformer с декодером TDT, который оптимизирован для транскрипции.
TDT - декодер, который предсказывает слова, звуки и их длительность. Вместо того чтобы проверять каждый кусочек аудиозаписи по порядку, TDT «перепрыгивает» через лишние сегменты, опираясь на прогноз времени, которое занимает текущий токен. Это сокращает вычисления, экономит время и при этом не теряется точность.
Fast Conformer — это переработанная архитектура Conformer, которая ускоряет распознавание речи за счет увеличения downsampling до 8x с помощью более легких сверток и упрощенных блоков, и замены стандартного внимания на комбинацию локального контекста и одного глобального токена.
Обучение Parakeet проводилось в 2 этапа: сначала на 128 GPU A100 с использованием псевдоразмеченных данных, а затем — на 500 часах человеческой транскрипции. Часть обучающего датасета пока недоступна публично, их NVIDIA обещает открыть после конференции Interspeech 2025.
Результаты на бенчмарке Open ASR впечатляют: средняя ошибка (WER) составляет всего 6.05% при greedy decoding без внешней языковой модели. Для сравнения, на чистом аудио из LibriSpeech WER составляет 1.69%, а сильном зашумлении (SNR 5) показатель не превышает 8.39%. В телефонии, где аудио сжимается через μ-law, потери в точности минимальны — всего 4.1%. По этим результатам, Parakeet-tdt-0.6b-v2 может стать универсальным инструментом для колл-центров или мобильных приложений.
Модель поддерживает форматы
.wav
и .flac
с частотой 16 кГц и требует всего 2 ГБ оперативной памяти. Для интеграции разработчикам понадобится фреймворк NeMo от NVIDIA, он упрощает настройку под конкретные задачи.@ai_machinelearning_big_data
#AI #ML #ASR #Parakeet #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤3🔥2
Forwarded from Machinelearning
GUI-Actor — методика на базе VLM, которая вместо традиционной генерации координат текстом при визуальной обработке интерфейса использует внимание внутри модели.
Чтобы уйти от координатного подхода, в GUI-Actor используется специальный токен
<ACTOR>
, который "учится" связываться с визуальными патчами, соответствующими целевой области экрана. За один проход модель может запомнить сразу несколько кандидатов на действие.Например, все кнопки "Сохранить" в сложном интерфейсе. Это очень похоже на человеческое восприятие: видеть сам элемент, а не его позиции по осям Х и Y.
Выбрать наиболее подходящий вариант из элементов-кандидатов помогает "верификатор". Это отдельная модель, оценивающая кандидатов от
<ACTOR>
и отбирающая самый подходящий для действия. Она не только улучшает точность, но и универсальна: ее можно подключить к другим моделям.Обучение требует минимум ресурсов. Можно заморозить основную VLM (Qwen2-VL-7B) и дообучить только новый action head и токены. Это всего ~100М параметров для 7B-модели.
Комбинация из такого быстрого обучения + верификатор почти догоняет полноценно обученные аналоги, сохраняя общие способности базовой модели. Никакого "катастрофического забывания" - агент учится кликать интерфейсы, не разучиваясь описывать картинки.
Результаты тестов на сложном бенчмарке ScreenSpot-Pro с высоким разрешением и незнакомыми интерфейсами (CAD, научный софт) GUI-Actor-7B с Qwen2-VL показал 40.7 балла, а с Qwen2.5-VL — 44.6, обойдя даже UI-TARS-72B (38.1).
На других тестах (ScreenSpot, ScreenSpot-v2) он тоже лидирует, особенно в иконках и текстовых элементах, демонстрируя крутую адаптацию к разным разрешениям и версткам.
В планах - выпуск еще двух моделей на основе Qwen2.5-VL (3B и 7B), демо GUI-Actor, код для модели-верификатора и датасеты для обучения.
@ai_machinelearning_big_data
#AI #ML #VLM #GUIActor #Microsoft
Please open Telegram to view this post
VIEW IN TELEGRAM
💡 Встречайте Water — простой и гибкий фреймворк для многокомпонентных AI-систем.
🌊 Что такое Water:
• Лёгкий, модульный и open-source
• Изначально рассчитан на работу с несколькими агентами
• Совместим с любыми популярными платформами: OpenAI Agents SDK, LangChain, Google ADK и другими
• Поддерживает структурированные сценарии: последовательные, параллельные, циклы, условия
Идеален для тех, кто хочет собирать сложные AI-цепочки без лишнего кода и ограничений.
🔗 GitHub: https://github.com/manthanguptaa/water
📘 Docs: https://manthanguptaa.in/posts/water/
#AI #Agents #MultiAgent #Framework #opensource
🌊 Что такое Water:
• Лёгкий, модульный и open-source
• Изначально рассчитан на работу с несколькими агентами
• Совместим с любыми популярными платформами: OpenAI Agents SDK, LangChain, Google ADK и другими
• Поддерживает структурированные сценарии: последовательные, параллельные, циклы, условия
Идеален для тех, кто хочет собирать сложные AI-цепочки без лишнего кода и ограничений.
🔗 GitHub: https://github.com/manthanguptaa/water
📘 Docs: https://manthanguptaa.in/posts/water/
#AI #Agents #MultiAgent #Framework #opensource
❤2👍1🥰1
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
📚 ArXiv Research Agent — отличный помощник для научных исследований.
Агент самостоятельно:
• Найдёт релевантные статьи с arXiv, bioRxiv, medRxiv и Semantic Scholar
• Проведёт полноценный литературный обзор
• Покажет, что упущено, и предложит, что добавить
• Даст инсайты и цитаты из миллионов научных работ
• Генерирует готовые конспекты
И др.
Вскоре обещают добавить поддержку MCP.
🔜 Попробовать: https://www.alphaxiv.org/assistant
@ai_machinelearning_big_data
#agent #ArXiv #ai #ml
Агент самостоятельно:
• Найдёт релевантные статьи с arXiv, bioRxiv, medRxiv и Semantic Scholar
• Проведёт полноценный литературный обзор
• Покажет, что упущено, и предложит, что добавить
• Даст инсайты и цитаты из миллионов научных работ
• Генерирует готовые конспекты
И др.
Вскоре обещают добавить поддержку MCP.
@ai_machinelearning_big_data
#agent #ArXiv #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
🎧 MiniMax продолжают жечь и выпускают генератор речи
🧁 Voice Design — продвинутая кастомизация генерации голоса:
• Позволяет задавать текст, голос, тон, эмоции, можно клонировать голос.
• Продвинутая кастомизация и мультиязычная поддержка
Попробовать можно здесь →https://minimax.io/audio
@ai_machinelearning_big_data
#audio #ai #ml #MiniMax
🧁 Voice Design — продвинутая кастомизация генерации голоса:
• Позволяет задавать текст, голос, тон, эмоции, можно клонировать голос.
• Продвинутая кастомизация и мультиязычная поддержка
Попробовать можно здесь →https://minimax.io/audio
@ai_machinelearning_big_data
#audio #ai #ml #MiniMax
❤6👍1🔥1🥰1