🚀 🌌MCP Universe🌌 — новый сложный бенчмарк для AI-агентов в реальных условиях.
🏆 Результаты:
🥇 GPT-5 — 43.7%
🥈 Grok-4 — 33.3%
🥉 Claude-4.0-Sonnet — 29.4%
Что это значит?
- 11 реальных MCP-серверов в 6 областях
- 133 доступных инструмента
- 231 задача, созданная вручную и проверенная экспертами
- Оценка по реальному выполнению действий, а не только по тексту
🌐 Сайт проекта: https://github.com/SalesforceAIResearch/MCP-Universe) |
📄 Статья: https://arxiv.org/abs/2508.14704
🏆 Результаты:
🥇 GPT-5 — 43.7%
🥈 Grok-4 — 33.3%
🥉 Claude-4.0-Sonnet — 29.4%
Что это значит?
- 11 реальных MCP-серверов в 6 областях
- 133 доступных инструмента
- 231 задача, созданная вручную и проверенная экспертами
- Оценка по реальному выполнению действий, а не только по тексту
🌐 Сайт проекта: https://github.com/SalesforceAIResearch/MCP-Universe) |
📄 Статья: https://arxiv.org/abs/2508.14704
Forwarded from Анализ данных (Data analysis)
🚀 NVIDIA ускорила LLM в 53 раза 🤯
Представь: твой бюджет на инференс снижается на 98%, а точность остаётся на уровне лучших моделей.
📌 Как это работает:
Метод называется Post Neural Architecture Search (PostNAS) — революционный подход к «апгрейду» уже обученных моделей.
Freeze the Knowledge — берём мощную модель (например, Qwen2.5) и «замораживаем» её MLP-слои, сохраняя интеллект.
Surgical Replacement — заменяем большую часть медленных O(n²) attention-слоёв на новый супер-эффективный дизайн JetBlock с линейным вниманием.
Hybrid Power — оставляем несколько full-attention слоёв в критичных точках, чтобы не потерять способность к сложным рассуждениям.
⚡ Результат - Jet-Nemotron:
- 2 885 токенов/с ⚡
- 47× меньше KV-кеша (всего 154 MB)
- Топовая точность при космической скорости
🔑 Почему это важно:
Для бизнеса: 53× ускорение = 98% экономии на масштабном развёртывании. ROI проектов с ИИ меняется радикально.
Для инженеров: теперь SOTA-уровень доступен даже на устройствах с ограниченной памятью.
Для исследователей: вместо миллионов на пре-трейнинг — можно создавать новые эффективные модели через архитектурные модификации.
🟠 Github
🟠 Статья
@data_analysis_ml
Представь: твой бюджет на инференс снижается на 98%, а точность остаётся на уровне лучших моделей.
📌 Как это работает:
Метод называется Post Neural Architecture Search (PostNAS) — революционный подход к «апгрейду» уже обученных моделей.
Freeze the Knowledge — берём мощную модель (например, Qwen2.5) и «замораживаем» её MLP-слои, сохраняя интеллект.
Surgical Replacement — заменяем большую часть медленных O(n²) attention-слоёв на новый супер-эффективный дизайн JetBlock с линейным вниманием.
Hybrid Power — оставляем несколько full-attention слоёв в критичных точках, чтобы не потерять способность к сложным рассуждениям.
⚡ Результат - Jet-Nemotron:
- 2 885 токенов/с ⚡
- 47× меньше KV-кеша (всего 154 MB)
- Топовая точность при космической скорости
🔑 Почему это важно:
Для бизнеса: 53× ускорение = 98% экономии на масштабном развёртывании. ROI проектов с ИИ меняется радикально.
Для инженеров: теперь SOTA-уровень доступен даже на устройствах с ограниченной памятью.
Для исследователей: вместо миллионов на пре-трейнинг — можно создавать новые эффективные модели через архитектурные модификации.
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6🔥5👍3
🎙 Ученые из Сбера предложили способ, как даже при небольшом объеме обучающих данных локальными моделями добиться высокой точности обнаружения галлюцинаций LLM — это прорыв в выявлении галлюцинаций искусственного интеллекта
Что важно:
– Точность выявления ошибок выше на ~30% по сравнению с аналогами.
– Для обучения хватает всего 250 примеров.
– Основан на анализе внутренних состояний LLM.
– Работает на классических алгоритмах и трансформере TabPFNv2.
– Снижает затраты на разметку и повышает надёжность ответов ИИ.
Что важно:
– Точность выявления ошибок выше на ~30% по сравнению с аналогами.
– Для обучения хватает всего 250 примеров.
– Основан на анализе внутренних состояний LLM.
– Работает на классических алгоритмах и трансформере TabPFNv2.
– Снижает затраты на разметку и повышает надёжность ответов ИИ.
👍6❤5😁2🔥1
🔥 Intern-S1-mini — новая лёгкая опенсорсная мультимодальная reasoning-модель
✨ 8B LLM + 0.3B vision encoder
✨ Лицензия Apache 2.0
✨ Обучение на 5T мультимодальных данных (50%+ — научные домены)
✨ Dynamic tokenizer для молекул и белковых последовательностей
🔗 https://huggingface.co/internlm/Intern-S1-mini
✨ 8B LLM + 0.3B vision encoder
✨ Лицензия Apache 2.0
✨ Обучение на 5T мультимодальных данных (50%+ — научные домены)
✨ Dynamic tokenizer для молекул и белковых последовательностей
🔗 https://huggingface.co/internlm/Intern-S1-mini
huggingface.co
internlm/Intern-S1-mini · Hugging Face
We’re on a journey to advance and democratize artificial intelligence through open source and open science.
❤3👍2
🔥 Thyme: Think Beyond Images
Thyme — это инновационная модель, которая улучшает обработку изображений и сложные задачи рассуждения, используя автономное генерирование и выполнение операций через исполняемый код. Она сочетает в себе методы супервайзинга и обучения с подкреплением, обеспечивая высокую точность выполнения кода.
🚀 Основные моменты:
- Автономная генерация и выполнение операций с изображениями.
- Комбинация супервайзинга и обучения с подкреплением.
- Поддержка высокоразрешающей перцепции и сложного рассуждения.
- Использует алгоритм GRPO-ATS для оптимизации работы.
📌 GitHub: https://github.com/yfzhang114/Thyme
#python
@bigdatai
Thyme — это инновационная модель, которая улучшает обработку изображений и сложные задачи рассуждения, используя автономное генерирование и выполнение операций через исполняемый код. Она сочетает в себе методы супервайзинга и обучения с подкреплением, обеспечивая высокую точность выполнения кода.
🚀 Основные моменты:
- Автономная генерация и выполнение операций с изображениями.
- Комбинация супервайзинга и обучения с подкреплением.
- Поддержка высокоразрешающей перцепции и сложного рассуждения.
- Использует алгоритм GRPO-ATS для оптимизации работы.
📌 GitHub: https://github.com/yfzhang114/Thyme
#python
@bigdatai
🚨 OpenAI выпустила HealthBench на Hugging Face!
🧑⚕️ Новый датасет создан для строгой оценки возможностей больших языковых моделей в области здравоохранения.
В него вошло 5 000 реалистичных медицинских диалогов, подготовленных при участии сотен врачей со всего мира.
⚡ Это важный шаг для применения ИИ в медицине — теперь модели будут проверяться не только на знания, но и на качество помощи человеку.
👉 Датасет доступен здесь: https://huggingface.co/datasets/openai/healthbench
🧑⚕️ Новый датасет создан для строгой оценки возможностей больших языковых моделей в области здравоохранения.
В него вошло 5 000 реалистичных медицинских диалогов, подготовленных при участии сотен врачей со всего мира.
⚡ Это важный шаг для применения ИИ в медицине — теперь модели будут проверяться не только на знания, но и на качество помощи человеку.
👉 Датасет доступен здесь: https://huggingface.co/datasets/openai/healthbench
❤3👍2🔥1
🤖 YandexGPT 5.1 Pro для корпоративных задач
Новая версия генеративной модели от Яндекса теперь доступна через API в Yandex Cloud AI Studio. Главное отличие — ориентация на бизнес-процессы: автоматизация документооборота, работа с внутренними базами знаний и интеграция в CRM.
Модель стала заметно точнее: 71% хороших ответов (против 60% раньше), число ошибок снизилось почти вдвое — до 16%. В бенчмарках она выигрывает у GPT-4.1 в 56% случаев, а также лучше понимает российский контекст и честно сообщает «не знаю», если данных нет.
Стоимость снижена втрое: 40 коп. за 1000 токенов
@bigdatai
Новая версия генеративной модели от Яндекса теперь доступна через API в Yandex Cloud AI Studio. Главное отличие — ориентация на бизнес-процессы: автоматизация документооборота, работа с внутренними базами знаний и интеграция в CRM.
Модель стала заметно точнее: 71% хороших ответов (против 60% раньше), число ошибок снизилось почти вдвое — до 16%. В бенчмарках она выигрывает у GPT-4.1 в 56% случаев, а также лучше понимает российский контекст и честно сообщает «не знаю», если данных нет.
Стоимость снижена втрое: 40 коп. за 1000 токенов
@bigdatai
🧩 Streamdown: Markdown для AI-стриминга
Streamdown — это замена react-markdown, оптимизированная для потоковой передачи Markdown-контента от AI. Он обеспечивает плавное форматирование даже при неполных блоках, что делает его идеальным для интеграции с AI-решениями.
🚀 Основные моменты:
- 🔄 Обработка неполных Markdown блоков
- 🎨 Поддержка GitHub Flavored Markdown
- 🔢 Рендеринг математических формул с помощью KaTeX
- 🛡️ Безопасное рендеринг на основе harden-react-markdown
- ⚡ Оптимизированная производительность с мемоизацией
📌 GitHub: https://github.com/vercel/streamdown
Streamdown — это замена react-markdown, оптимизированная для потоковой передачи Markdown-контента от AI. Он обеспечивает плавное форматирование даже при неполных блоках, что делает его идеальным для интеграции с AI-решениями.
🚀 Основные моменты:
- 🔄 Обработка неполных Markdown блоков
- 🎨 Поддержка GitHub Flavored Markdown
- 🔢 Рендеринг математических формул с помощью KaTeX
- 🛡️ Безопасное рендеринг на основе harden-react-markdown
- ⚡ Оптимизированная производительность с мемоизацией
📌 GitHub: https://github.com/vercel/streamdown
GitHub
GitHub - vercel/streamdown: A drop-in replacement for react-markdown, designed for AI-powered streaming.
A drop-in replacement for react-markdown, designed for AI-powered streaming. - vercel/streamdown
👍2❤1