Generative Multiplane Images: Making a 2D GAN 3D-Aware
What is really needed to make an existing 2D GAN 3D-aware? To answer this question, we modify a classical GAN, i.e., StyleGANv2, as little as possible. We find that only two modifications are absolutely necessary: 1) a multiplane image style generator branch which produces a set of alpha maps conditioned on their depth; 2) a pose-conditioned discriminator.
Github: https://github.com/apple/ml-gmpi
Paper: https://arxiv.org/abs/2207.10642v1
Dataset: https://paperswithcode.com/dataset/metfaces
Project: https://xiaoming-zhao.github.io/projects/gmpi/
Pretrained checkpoints: https://drive.google.com/drive/folders/1MEIjen0XOIW-kxEMfBUONnKYrkRATSR_
👉 @bigdata_1
What is really needed to make an existing 2D GAN 3D-aware? To answer this question, we modify a classical GAN, i.e., StyleGANv2, as little as possible. We find that only two modifications are absolutely necessary: 1) a multiplane image style generator branch which produces a set of alpha maps conditioned on their depth; 2) a pose-conditioned discriminator.
Github: https://github.com/apple/ml-gmpi
Paper: https://arxiv.org/abs/2207.10642v1
Dataset: https://paperswithcode.com/dataset/metfaces
Project: https://xiaoming-zhao.github.io/projects/gmpi/
Pretrained checkpoints: https://drive.google.com/drive/folders/1MEIjen0XOIW-kxEMfBUONnKYrkRATSR_
👉 @bigdata_1
Machine Learning Algorithms Explained in Less Than 1 Minute Each
https://www.kdnuggets.com/2022/07/machine-learning-algorithms-explained-less-1-minute.html
👉 @bigdata_1
https://www.kdnuggets.com/2022/07/machine-learning-algorithms-explained-less-1-minute.html
👉 @bigdata_1
Weakly Supervised Object Localization via Transformer with Implicit Spatial Calibration
learnable parameter to dynamically adjust the semantic correlations and spatial context intensities for effective information propagation.
Github: https://github.com/164140757/scm
Paper: https://arxiv.org/abs/2207.10447v1
Dataset: https://paperswithcode.com/dataset/cub-200-2011
👉 @bigdata_1
learnable parameter to dynamically adjust the semantic correlations and spatial context intensities for effective information propagation.
Github: https://github.com/164140757/scm
Paper: https://arxiv.org/abs/2207.10447v1
Dataset: https://paperswithcode.com/dataset/cub-200-2011
👉 @bigdata_1
👍1
SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks
Simple but very effective attention module for Convolutional Neural Networks (ConvNets).
Github: https://github.com/ZjjConan/SimAM
Paper: http://proceedings.mlr.press/v139/yang21o.html
Dataset: https://paperswithcode.com/dataset/cifar-10
Google Drive: https://drive.google.com/drive/folders/1rRT0UCPeRLPdTCJvv43hvAnGnS49nIWn?usp=sharing
👉 @bigdata_1
Simple but very effective attention module for Convolutional Neural Networks (ConvNets).
Github: https://github.com/ZjjConan/SimAM
Paper: http://proceedings.mlr.press/v139/yang21o.html
Dataset: https://paperswithcode.com/dataset/cifar-10
Google Drive: https://drive.google.com/drive/folders/1rRT0UCPeRLPdTCJvv43hvAnGnS49nIWn?usp=sharing
👉 @bigdata_1
🔥2
This media is not supported in your browser
VIEW IN TELEGRAM
Multiface: A Dataset for Neural Face Rendering
Github: https://github.com/facebookresearch/multiface
Paper: https://arxiv.org/abs/2207.11243v1
Dataset: https://paperswithcode.com/dataset/facewarehouse
👉 @bigdata_1
Github: https://github.com/facebookresearch/multiface
Paper: https://arxiv.org/abs/2207.11243v1
Dataset: https://paperswithcode.com/dataset/facewarehouse
👉 @bigdata_1
MAPIE - Model Agnostic Prediction Interval Estimator
MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourite scikit-learn-compatible model for single-output regression or multi-class classification settings.
Github: https://github.com/scikit-learn-contrib/mapie
Paper: https://arxiv.org/abs/2207.12274v1
Docs: https://mapie.readthedocs.io/en/latest/
👉 @bigdata_1
MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourite scikit-learn-compatible model for single-output regression or multi-class classification settings.
Github: https://github.com/scikit-learn-contrib/mapie
Paper: https://arxiv.org/abs/2207.12274v1
Docs: https://mapie.readthedocs.io/en/latest/
👉 @bigdata_1
⚡1
Learning Visual Representation from Modality-Shared Contrastive Language-Image Pre-training
Github: https://github.com/hxyou/msclip
Paper: https://arxiv.org/abs/2207.12661v1
Dataset: https://paperswithcode.com/dataset/sst
👉 @bigdata_1
Github: https://github.com/hxyou/msclip
Paper: https://arxiv.org/abs/2207.12661v1
Dataset: https://paperswithcode.com/dataset/sst
👉 @bigdata_1
❤1
Learning Protein Representations via Complete 3D Graph Networks
DIG: Dive into Graphs is a turnkey library for graph deep learning research.
Github: https://github.com/divelab/DIG
Paper: https://arxiv.org/abs/2207.12600v1
Tutorials: https://diveintographs.readthedocs.io/en/latest/tutorials/graphdf.html
Documentation: https://diveintographs.readthedocs.io/
Benchmarks: https://github.com/divelab/DIG/tree/dig-stable/benchmarks
Dataset: https://paperswithcode.com/dataset/atom3d
👉 @bigdata_1
DIG: Dive into Graphs is a turnkey library for graph deep learning research.
Github: https://github.com/divelab/DIG
Paper: https://arxiv.org/abs/2207.12600v1
Tutorials: https://diveintographs.readthedocs.io/en/latest/tutorials/graphdf.html
Documentation: https://diveintographs.readthedocs.io/
Benchmarks: https://github.com/divelab/DIG/tree/dig-stable/benchmarks
Dataset: https://paperswithcode.com/dataset/atom3d
👉 @bigdata_1
⚡1
ALBench: A Framework for Evaluating Active Learning in Object Detection
An active learning benchmark framework named as ALBench for evaluating active learning in object detection.
Github: https://github.com/industryessentials/ymir
Paper: https://arxiv.org/abs/2207.13339v1
Projects: https://github.com/IndustryEssentials/ymir/projects
Dataset: https://paperswithcode.com/dataset/coco
👉 @bigdata_1
An active learning benchmark framework named as ALBench for evaluating active learning in object detection.
Github: https://github.com/industryessentials/ymir
Paper: https://arxiv.org/abs/2207.13339v1
Projects: https://github.com/IndustryEssentials/ymir/projects
Dataset: https://paperswithcode.com/dataset/coco
👉 @bigdata_1
⚡1
Rewriting Geometric Rules of a GAN
Method which allows edit a GAN model to synthesize many unseen objects with the desired shape
Github: https://github.com/peterwang512/ganwarping
Paper: https://arxiv.org/abs/2207.14288v1
Project: https://peterwang512.github.io/GANWarping/
Dataset: https://paperswithcode.com/dataset/ffhq
Video: https://www.youtube.com/watch?v=2m7_rbsO6Hk
👉 @bigdata_1
Method which allows edit a GAN model to synthesize many unseen objects with the desired shape
Github: https://github.com/peterwang512/ganwarping
Paper: https://arxiv.org/abs/2207.14288v1
Project: https://peterwang512.github.io/GANWarping/
Dataset: https://paperswithcode.com/dataset/ffhq
Video: https://www.youtube.com/watch?v=2m7_rbsO6Hk
👉 @bigdata_1
⚡1😁1
Deep Deformable 3D Caricature with Learned Shape Control (DD3C)
Github: https://github.com/ycjungsubhuman/deepdeformable3dcaricatures
Paper: https://arxiv.org/abs/2207.14593v1
Project: https://ycjungsubhuman.github.io/DeepDeformable3DCaricatures
Dataset: https://paperswithcode.com/dataset/facewarehouse
Video: https://youtu.be/WLMPEaK6E4M
👉 @bigdata_1
Github: https://github.com/ycjungsubhuman/deepdeformable3dcaricatures
Paper: https://arxiv.org/abs/2207.14593v1
Project: https://ycjungsubhuman.github.io/DeepDeformable3DCaricatures
Dataset: https://paperswithcode.com/dataset/facewarehouse
Video: https://youtu.be/WLMPEaK6E4M
👉 @bigdata_1
😁2
CLIFF: Carrying Location Information in Full Frames into Human Pose and Shape Estimation
Github: https://github.com/huawei-noah/noah-research/tree/master/CLIFF
Paper: https://arxiv.org/abs/2208.00571v1
Pretrained checkpoints : https://drive.google.com/drive/folders/1EmSZwaDULhT9m1VvH7YOpCXwBWgYrgwP
Dataset: https://paperswithcode.com/dataset/human3-6m
👉 @bigdata_1
Github: https://github.com/huawei-noah/noah-research/tree/master/CLIFF
Paper: https://arxiv.org/abs/2208.00571v1
Pretrained checkpoints : https://drive.google.com/drive/folders/1EmSZwaDULhT9m1VvH7YOpCXwBWgYrgwP
Dataset: https://paperswithcode.com/dataset/human3-6m
👉 @bigdata_1
⚡1
This media is not supported in your browser
VIEW IN TELEGRAM
Expanding Language-Image Pretrained Models for General Video Recognition by Microsoft.
Video-specific prompting scheme, which leverages video content information for generating discriminative textual prompts.
Github: https://github.com/microsoft/VideoX/tree/master/X-CLIP
Paper: https://arxiv.org/abs/2208.02816v1
Dataset: https://paperswithcode.com/dataset/ucf101
👉 @bigdata_1
Video-specific prompting scheme, which leverages video content information for generating discriminative textual prompts.
Github: https://github.com/microsoft/VideoX/tree/master/X-CLIP
Paper: https://arxiv.org/abs/2208.02816v1
Dataset: https://paperswithcode.com/dataset/ucf101
👉 @bigdata_1
⚡1❤1
This media is not supported in your browser
VIEW IN TELEGRAM
Prompt Tuning for Generative Multimodal Pretrained Models
Github: https://github.com/ofa-sys/ofa
Paper: https://arxiv.org/abs/2208.02532v1
Dataset: https://paperswithcode.com/dataset/snli-ve
Demo: https://huggingface.co/spaces/OFA-Sys/OFA-Generic_Interface
👉 @bigdata_1
Github: https://github.com/ofa-sys/ofa
Paper: https://arxiv.org/abs/2208.02532v1
Dataset: https://paperswithcode.com/dataset/snli-ve
Demo: https://huggingface.co/spaces/OFA-Sys/OFA-Generic_Interface
👉 @bigdata_1
👍2⚡1
P2P: Tuning Pre-trained Image Models for Point Cloud Analysis with Point-to-Pixel Prompting
Github: https://github.com/wangzy22/P2P
Paper: https://arxiv.org/abs/2208.02812v1
Dataset: https://paperswithcode.com/dataset/imagenet
Model: https://shapenet.cs.stanford.edu/media/modelnet40_normal_resampled.zip
👉 @bigdata_1
Github: https://github.com/wangzy22/P2P
Paper: https://arxiv.org/abs/2208.02812v1
Dataset: https://paperswithcode.com/dataset/imagenet
Model: https://shapenet.cs.stanford.edu/media/modelnet40_normal_resampled.zip
👉 @bigdata_1
⚡1
Per-Clip Video Object Segmentation
Progressive matching mechanism for efficient information-passing within a clip.
Github: https://github.com/pkyong95/PCVOS
Paper: https://arxiv.org/abs/2208.01924v1
Dataset: https://paperswithcode.com/dataset/davis
Video: https://youtu.be/6QATHDwrUx0
👉 @bigdata_1
Progressive matching mechanism for efficient information-passing within a clip.
Github: https://github.com/pkyong95/PCVOS
Paper: https://arxiv.org/abs/2208.01924v1
Dataset: https://paperswithcode.com/dataset/davis
Video: https://youtu.be/6QATHDwrUx0
👉 @bigdata_1
⚡1
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers
Github: https://github.com/lkeab/BCNet
Paper: https://arxiv.org/abs/2208.04438v1
Dataset: https://paperswithcode.com/dataset/bdd100k
Video: https://www.youtube.com/watch?v=iHlGJppJGiQ
👉 @bigdata_1
Github: https://github.com/lkeab/BCNet
Paper: https://arxiv.org/abs/2208.04438v1
Dataset: https://paperswithcode.com/dataset/bdd100k
Video: https://www.youtube.com/watch?v=iHlGJppJGiQ
👉 @bigdata_1
⚡1
LAMDA-SSL: Semi-Supervised Learning in Python
Github: https://github.com/ygzwqzd/lamda-ssl
Paper: https://arxiv.org/pdf/2208.04610.pdf
Docs: https://ygzwqzd.github.io/LAMDA-SSL
👉 @bigdata_1
Github: https://github.com/ygzwqzd/lamda-ssl
Paper: https://arxiv.org/pdf/2208.04610.pdf
Docs: https://ygzwqzd.github.io/LAMDA-SSL
👉 @bigdata_1