OWL-ViT: Open-World Object Detection with Vision Transformers
OWL-ViT is an open-vocabulary object detector.
Github: https://github.com/google-research/scenic/tree/main/scenic/projects/owl_vit
Paper: https://arxiv.org/abs/2205.06230
Colab: https://colab.research.google.com/github/google-research/scenic/blob/main/scenic/projects/owl_vit/notebooks/OWL_ViT_minimal_example.ipynb
Dataset: https://paperswithcode.com/dataset/objects365
👉 @bigdata_1
OWL-ViT is an open-vocabulary object detector.
Github: https://github.com/google-research/scenic/tree/main/scenic/projects/owl_vit
Paper: https://arxiv.org/abs/2205.06230
Colab: https://colab.research.google.com/github/google-research/scenic/blob/main/scenic/projects/owl_vit/notebooks/OWL_ViT_minimal_example.ipynb
Dataset: https://paperswithcode.com/dataset/objects365
👉 @bigdata_1
👍1
TSM: Temporal Shift Module for Efficient Video Understanding
Github: https://github.com/MIT-HAN-LAB/temporal-shift-module
Paper: https://arxiv.org/abs/1811.08383
Demo: https://www.youtube.com/watch?v=0T6u7S_gq-4
👉 @bigdata_1
Github: https://github.com/MIT-HAN-LAB/temporal-shift-module
Paper: https://arxiv.org/abs/1811.08383
Demo: https://www.youtube.com/watch?v=0T6u7S_gq-4
👉 @bigdata_1
AdaVAE: Exploring Adaptive GPT-2s in Variational Auto-Encoders for Language Modeling
First VAE framework empowered with adaptive GPT-2s (AdaVAE).
Github: https://github.com/ImKeTT/adavae
Paper: https://arxiv.org/abs/2205.05862v1
Task: https://paperswithcode.com/task/representation-learning
👉 @bigdata_1
First VAE framework empowered with adaptive GPT-2s (AdaVAE).
Github: https://github.com/ImKeTT/adavae
Paper: https://arxiv.org/abs/2205.05862v1
Task: https://paperswithcode.com/task/representation-learning
👉 @bigdata_1
TSM: Temporal Shift Module for Efficient Video Understanding
Github: https://github.com/nikitakit/self-attentive-parser
Paper: https://arxiv.org/abs/2109.12814v1
Dataset: https://paperswithcode.com/dataset/penn-treebank
👉 @bigdata_1
Github: https://github.com/nikitakit/self-attentive-parser
Paper: https://arxiv.org/abs/2109.12814v1
Dataset: https://paperswithcode.com/dataset/penn-treebank
👉 @bigdata_1
👍2
Efficient and performance-portable vector software
CPUs provide SIMD/vector instructions that apply the same operation to multiple data items. This can reduce energy usage e.g. fivefold because fewer instructions are executed. We also often see 5-10x speedups.
Code: https://github.com/google/highway
Paper: https://arxiv.org/abs/2205.05982v1
Testing: https://github.com/google/highway/blob/master/g3doc/release_testing_process.md
👉 @bigdata_1
CPUs provide SIMD/vector instructions that apply the same operation to multiple data items. This can reduce energy usage e.g. fivefold because fewer instructions are executed. We also often see 5-10x speedups.
Code: https://github.com/google/highway
Paper: https://arxiv.org/abs/2205.05982v1
Testing: https://github.com/google/highway/blob/master/g3doc/release_testing_process.md
👉 @bigdata_1
❤1👍1
Towards Flexible Blind JPEG Artifacts Removal
Github: https://github.com/jiaxi-jiang/fbcnn
Paper: https://arxiv.org/abs/2109.14573v1
👉 @bigdata_1
Github: https://github.com/jiaxi-jiang/fbcnn
Paper: https://arxiv.org/abs/2109.14573v1
👉 @bigdata_1
👍1
[RK-Net]Joint Representation Learning and Keypoint Detection for Cross-view Geo-localization
Github: https://github.com/AggMan96/RK-Net
Paper: https://zhunzhong.site/paper/RK_Net.pdf
Dataset: https://paperswithcode.com/dataset/university-1652
👉 @bigdata_1
Github: https://github.com/AggMan96/RK-Net
Paper: https://zhunzhong.site/paper/RK_Net.pdf
Dataset: https://paperswithcode.com/dataset/university-1652
👉 @bigdata_1
👍2
Evaluation of Deep Neural Network Domain Adaptation Techniques for Image Recognition
Github: https://github.com/agrija9/deep-unsupervised-domain-adaptation
Paper: https://arxiv.org/abs/2109.13420v1
Dataset: https://paperswithcode.com/dataset/office-31
👉 @bigdata_1
Github: https://github.com/agrija9/deep-unsupervised-domain-adaptation
Paper: https://arxiv.org/abs/2109.13420v1
Dataset: https://paperswithcode.com/dataset/office-31
👉 @bigdata_1
Group R-CNN for Point-based Weakly Semi-supervised Object Detection
Instance-aware representation learning which consists of instance-aware feature enhancement and instance-aware parameter generation to overcome this issue.
Code: https://github.com/jshilong/grouprcnn
Installation: https://mmdetection.readthedocs.io/en/v2.18.1/get_started.html#installation
Paper: https://arxiv.org/abs/2205.05920v1
Task: https://paperswithcode.com/task/object-detection
Dataset: https://paperswithcode.com/dataset/coco
👉 @bigdata_1
Instance-aware representation learning which consists of instance-aware feature enhancement and instance-aware parameter generation to overcome this issue.
Code: https://github.com/jshilong/grouprcnn
Installation: https://mmdetection.readthedocs.io/en/v2.18.1/get_started.html#installation
Paper: https://arxiv.org/abs/2205.05920v1
Task: https://paperswithcode.com/task/object-detection
Dataset: https://paperswithcode.com/dataset/coco
👉 @bigdata_1
PyRDF2Vec: A Python Implementation and Extension of RDF2Vec
Create a 2D feature matrix from a Knowledge Graph for downstream ML tasks.
Github: https://github.com/IBCNServices/pyRDF2Vec
RDF2Vec: http://rdf2vec.org/
Paper: https://arxiv.org/abs/2205.02283v1
Examples: https://github.com/IBCNServices/pyRDF2Vec/tree/main/examples
How to Create Representations of Entities in a Knowledge Graph
👉 @bigdata_1
Create a 2D feature matrix from a Knowledge Graph for downstream ML tasks.
Github: https://github.com/IBCNServices/pyRDF2Vec
RDF2Vec: http://rdf2vec.org/
Paper: https://arxiv.org/abs/2205.02283v1
Examples: https://github.com/IBCNServices/pyRDF2Vec/tree/main/examples
How to Create Representations of Entities in a Knowledge Graph
👉 @bigdata_1
🍌1
This media is not supported in your browser
VIEW IN TELEGRAM
Language Models Can See: Plugging Visual Controls in Text Generation
Github: https://github.com/yxuansu/magic
Paper: https://arxiv.org/abs/2205.02655v1
Dataset: https://paperswithcode.com/dataset/coco
Contrastive Framework for Neural Text Generation: https://github.com/yxuansu/simctg
Colab: https://colab.research.google.com/drive/19lyyMXDRNr-Op8vwUOiRmbhMxI_s3rwW?usp=sharing
👉 @bigdata_1
Github: https://github.com/yxuansu/magic
Paper: https://arxiv.org/abs/2205.02655v1
Dataset: https://paperswithcode.com/dataset/coco
Contrastive Framework for Neural Text Generation: https://github.com/yxuansu/simctg
Colab: https://colab.research.google.com/drive/19lyyMXDRNr-Op8vwUOiRmbhMxI_s3rwW?usp=sharing
👉 @bigdata_1
🍌3
Asymmetric 3D Context Fusion for Universal Lesion Detection
Github: https://github.com/M3DV/AlignShift
Paper: https://arxiv.org/pdf/2109.08684v1.pdf
👉 @bigdata_1
Github: https://github.com/M3DV/AlignShift
Paper: https://arxiv.org/pdf/2109.08684v1.pdf
👉 @bigdata_1
🍌2
Semi-supervised-learning-for-medical-image-segmentation.
Github: https://github.com/HiLab-git/SSL4MIS
Paper: https://arxiv.org/abs/2112.04894v1
👉 @bigdata_1
Github: https://github.com/HiLab-git/SSL4MIS
Paper: https://arxiv.org/abs/2112.04894v1
👉 @bigdata_1
Alias-Free Generative Adversarial Networks (StyleGAN3)
Github: https://github.com/pdillis/stylegan3-fun
Paper: https://arxiv.org/abs/2111.02175v1
Dataset: https://paperswithcode.com/dataset/ffhq
👉 @bigdata_1
Github: https://github.com/pdillis/stylegan3-fun
Paper: https://arxiv.org/abs/2111.02175v1
Dataset: https://paperswithcode.com/dataset/ffhq
👉 @bigdata_1
🔝 SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning
Github: https://github.com/sustainlab-group/sustainbench
Paper: https://arxiv.org/abs/2111.04724v1
Datasets: https://sustainlab-group.github.io/sustainbench/docs/datasets/
👉 @bigdata_1
Github: https://github.com/sustainlab-group/sustainbench
Paper: https://arxiv.org/abs/2111.04724v1
Datasets: https://sustainlab-group.github.io/sustainbench/docs/datasets/
👉 @bigdata_1
🍌3
Language Models are Few-shot Multilingual Learners
Github: https://github.com/gentaiscool/few-shot-lm
Paper: https://arxiv.org/abs/2109.07684v1
👉 @bigdata_1
Github: https://github.com/gentaiscool/few-shot-lm
Paper: https://arxiv.org/abs/2109.07684v1
👉 @bigdata_1
❤1
Towards Unified Keyframe Propagation Models
A two-stream approach, where high-frequency features interact locally and low-frequency features interact globally.
Github: https://github.com/runwayml/guided-inpainting
Paper: https://arxiv.org/abs/2205.09731v1
Dataset: https://paperswithcode.com/dataset/places
👉 @bigdata_1
A two-stream approach, where high-frequency features interact locally and low-frequency features interact globally.
Github: https://github.com/runwayml/guided-inpainting
Paper: https://arxiv.org/abs/2205.09731v1
Dataset: https://paperswithcode.com/dataset/places
👉 @bigdata_1
Sockeye
Sockeye is an open-source sequence-to-sequence framework for Neural Machine Translation built on PyTorch.
Code: https://github.com/awslabs/sockeye
Tutorial: https://github.com/awslabs/sockeye/blob/main/docs/tutorials/wmt_large.md
Paper: https://arxiv.org/abs/2205.06618v1
👉 @bigdata_1
Sockeye is an open-source sequence-to-sequence framework for Neural Machine Translation built on PyTorch.
Code: https://github.com/awslabs/sockeye
Tutorial: https://github.com/awslabs/sockeye/blob/main/docs/tutorials/wmt_large.md
Paper: https://arxiv.org/abs/2205.06618v1
👉 @bigdata_1
🍓1
A graph-transformer for whole slide image classification
Graph-Transformer (GT) that fuses a graph-based representation of an WSI and a vision transformer for processing pathology images.
Github: https://github.com/vkola-lab/tmi2022
Paper: https://arxiv.org/abs/2205.09671v1
Dataset: https://paperswithcode.com/dataset/imagenet
👉 @bigdata_1
Graph-Transformer (GT) that fuses a graph-based representation of an WSI and a vision transformer for processing pathology images.
Github: https://github.com/vkola-lab/tmi2022
Paper: https://arxiv.org/abs/2205.09671v1
Dataset: https://paperswithcode.com/dataset/imagenet
👉 @bigdata_1
👍1🍓1
RankGen - Improving Text Generation with Large Ranking Models
RankGen is a 1.2 billion encoder model which maps prefixes and generations from any language model (in continutation to the prefix) to a shared vector space.
Github: https://github.com/martiansideofthemoon/rankgen
Paper: https://arxiv.org/abs/2205.09726
Dataset: https://paperswithcode.com/dataset/imagenet
👉 @bigdata_1
RankGen is a 1.2 billion encoder model which maps prefixes and generations from any language model (in continutation to the prefix) to a shared vector space.
Github: https://github.com/martiansideofthemoon/rankgen
Paper: https://arxiv.org/abs/2205.09726
Dataset: https://paperswithcode.com/dataset/imagenet
👉 @bigdata_1
🍓1