BigData
3.31K subscribers
754 photos
89 videos
3 files
835 links
Data Science : Big Data : Machine Learning : Deep Learning. По всем вопросам @evgenycarter
加入频道
Как освоить Streamlit для науки о данных.

https://blog.streamlit.io/how-to-master-streamlit-for-data-science/

👉 @bigdata_1
👍2
Efficient CNN-LSTM based Image Captioning using Neural Network Compression

Github: https://github.com/amanmohanty/idl-nncompress

Paper: https://arxiv.org/pdf/2012.09708.pdf

👉 @bigdata_1
🔥 Model Search by Google

Automatically build and deploy state-of-the-art machine learning models on structured data.

Github: https://github.com/google/model_search

Paper: https://pdfs.semanticscholar.org/1bca/d4cdfbc01fbb60a815660d034e561843d67a.pdf

Project: https://cloud.google.com/automl-tables

👉 @bigdata_1
👍1
Domain specific BERT representation for Named Entity Recognition of lab protocol

Github: https://github.com/tejasvaidhyadev/NER_Lab_Protocols

Website: http://noisy-text.github.io/2020/wlp-task.html

Paper: https://arxiv.org/pdf/2012.11145.pdf

👉 @bigdata_1
👍2
🚀 DALL-E Zero-Shot Text-to-Image Generation

Github: https://github.com/openai/DALL-E

Paper: https://arxiv.org/abs/2102.12092

OpenAi: https://openai.com/blog/dall-e/

👉 @bigdata_1
RECCON: Recognizing Emotion Cause in CONversations

Github: https://github.com/declare-lab/RECCON

Paper: https://arxiv.org/pdf/2012.11820.pdf

👉 @bigdata_1
👍1
Полный курс по искусственному интеллекту CS221 от университета Stanford
Stanford CS221: Artificial Intelligence: Principles and Techniques | Autumn 2019

Lecture 1: Overview
Lecture 2: Machine Learning 1 - Linear Classifiers, SGD
Lecture 3: Machine Learning 2 - Features, Neural Networks
Lecture 4: Machine Learning 3 - Generalization, K-means
Lecture 5: Search 1 - Dynamic Programming, Uniform Cost Search
Lecture 6: Search 2 - A*
Lecture 7: Markov Decision Processes - Value Iteration
Lecture 8: Markov Decision Processes - Reinforcement Learning
Lecture 9: Game Playing 1 - Minimax, Alpha-beta Pruning
Lecture 10: Game Playing 2 - TD Learning, Game Theory
Lecture 11: Factor Graphs 1 - Constraint Satisfaction Problems
Lecture 12: Factor Graphs 2 - Conditional Independence
Lecture 13: Bayesian Networks 1 - Inference
Lecture 14: Bayesian Networks 2 - Forward-Backward
Lecture 15: Bayesian Networks 3 - Maximum Likelihood
Lecture 16: Logic 1 - Propositional Logic
Lecture 17: Logic 2 - First-order Logic
Lecture 18: Deep Learning
Lecture 19: Conclusion

https://www.youtube.com/playlist?list=PLoROMvodv4rO1NB9TD4iUZ3qghGEGtqNX


👉 @bigdata_1
🔥3👍2
When Attention Meets Fast Recurrence: Training Language Models with Reduced Compute

Github: https://github.com/asappresearch/sru

Paper: https://arxiv.org/abs/2102.12459v1

Project: https://www.asapp.com/blog/reducing-the-high-cost-of-training-nlp-models-with-sru/

👉 @bigdata_1
👍1
Нейронка для нейротоксинов

В феврале прошлого года я впервые обращался к теме прогнозирования новых химических соединений методами глубокого обучения — когда опубликовал перевод об инструменте FermiNet. Такие исследования, находящиеся на стыке физики, химии, биоинформатики и фармакологии, призваны смоделировать потенциально возможные химические связи и конфигурации молекул. Так можно одновременно удешевить и значительно ускорить разработку новых лекарств. Также я затрагивал эту тему в статье о выращивании кристаллов, но в несколько ином аспекте: гравитация вносит коррективы в форму молекул, поэтому некоторые конфигурации молекул быстро «сминаются». Эта проблема остро стоит при производстве баснословно дорогих препаратов (прежде всего, противораковых), терапевтический эффект которых заключается в поддержании строго определенной формы молекул, блокирующих патологические биохимические процессы. Если бы мы могли поставить на поток производство филигранных молекул (в частности, ферментов), блокирующих работу определенных белков, это преобразило фармакологию, в значительной степени ее персонализировав. Но у такой линии исследований есть и обратная сторона: она открывает путь к созданию чрезвычайно токсичных и цепких веществ, которые было бы практически невозможно «выковырять» из биохимического аппарата, если они там окажутся.

https://habr.com/ru/post/662694/
👍4
Effective Deployment of CNNs for 3DoF Pose Estimation and Grasping in Industrial Settings

Github: https://github.com/m4nh/loop

Video: https://www.youtube.com/watch?v=njLINQIA9iI

Paper: https://arxiv.org/abs/2012.13210v1

👉 @bigdata_1
👍1
MuZero General: Open Reimplementation of MuZero

GitHub: https://github.com/werner-duvaud/muzero-general

Paper: https://arxiv.org/abs/1911.08265

👉 @bigdata_1
👍2