〰 Monotonic Differentiable Sorting Networks
Github: https://github.com/Felix-Petersen/diffsort
Colab: https://colab.research.google.com/drive/1q0TZFFYB9FlOJYWKt0_7ZaXQT190anhm?usp=sharing
Paper: https://arxiv.org/abs/2203.09630v1
Video: https://www.youtube.com/watch?v=Rl-sFaE1z4M
Dataset: https://paperswithcode.com/dataset/svhn
Github: https://github.com/Felix-Petersen/diffsort
Colab: https://colab.research.google.com/drive/1q0TZFFYB9FlOJYWKt0_7ZaXQT190anhm?usp=sharing
Paper: https://arxiv.org/abs/2203.09630v1
Video: https://www.youtube.com/watch?v=Rl-sFaE1z4M
Dataset: https://paperswithcode.com/dataset/svhn
Генеративное моделирование путем оценки градиентов распределения данных.
https://yang-song.github.io/blog/2021/score/
👉 @bigdata_1
https://yang-song.github.io/blog/2021/score/
👉 @bigdata_1
xmanager: фреймворк для управления экспериментами в DS.
https://github.com/deepmind/xmanager
👉 @bigdata_1
https://github.com/deepmind/xmanager
👉 @bigdata_1
Как я стал настоящим самоучкой в Data Science: моя история.
https://towardsdatascience.com/how-i-became-an-actual-self-taught-data-scientist-my-story-ba4dbeb96cf8
👉 @bigdata_1
https://towardsdatascience.com/how-i-became-an-actual-self-taught-data-scientist-my-story-ba4dbeb96cf8
👉 @bigdata_1
Реализация эффекта Моны Лизы с помощью tensorflow.
https://blog.tensorflow.org/2020/09/bringing-mona-lisa-effect-to-life-tensorflow-js.html
👉 @bigdata_1
https://blog.tensorflow.org/2020/09/bringing-mona-lisa-effect-to-life-tensorflow-js.html
👉 @bigdata_1
Отладка моделей машинного обучения с помощью Comet Artifacts.
https://www.comet.ml/site/debugging-your-machine-learning-models-with-comet-artifacts/
👉 @bigdata_1
https://www.comet.ml/site/debugging-your-machine-learning-models-with-comet-artifacts/
👉 @bigdata_1
Советы и улучшения Jupyter Notebook
https://nathaniel-speiser.github.io/Jupyter-Notebook-tips-and-improvements/
👉 @bigdata_1
https://nathaniel-speiser.github.io/Jupyter-Notebook-tips-and-improvements/
👉 @bigdata_1
Как освоить Streamlit для науки о данных.
https://blog.streamlit.io/how-to-master-streamlit-for-data-science/
👉 @bigdata_1
https://blog.streamlit.io/how-to-master-streamlit-for-data-science/
👉 @bigdata_1
👍2
Graph Transformer Architecture
Github: https://github.com/graphdeeplearning/graphtransformer
Paper: https://arxiv.org/abs/2012.09699
👉 @bigdata_1
Github: https://github.com/graphdeeplearning/graphtransformer
Paper: https://arxiv.org/abs/2012.09699
👉 @bigdata_1
👍1
This media is not supported in your browser
VIEW IN TELEGRAM
🕹 Mastering Atari with Discrete World Models
Github: https://github.com/danijar/dreamerv2
Google research: https://ai.googleblog.com/2021/02/mastering-atari-with-discrete-world.html
Paper: https://arxiv.org/abs/2010.02193
👉 @bigdata_1
Github: https://github.com/danijar/dreamerv2
Google research: https://ai.googleblog.com/2021/02/mastering-atari-with-discrete-world.html
Paper: https://arxiv.org/abs/2010.02193
👉 @bigdata_1
👍1
Efficient CNN-LSTM based Image Captioning using Neural Network Compression
Github: https://github.com/amanmohanty/idl-nncompress
Paper: https://arxiv.org/pdf/2012.09708.pdf
👉 @bigdata_1
Github: https://github.com/amanmohanty/idl-nncompress
Paper: https://arxiv.org/pdf/2012.09708.pdf
👉 @bigdata_1
Unbiased Teacher for Semi-Supervised Object Detection
Github: https://github.com/facebookresearch/unbiased-teacher
Paper: https://arxiv.org/abs/2102.09480
Project: https://ycliu93.github.io/projects/unbiasedteacher.html
👉 @bigdata_1
Github: https://github.com/facebookresearch/unbiased-teacher
Paper: https://arxiv.org/abs/2102.09480
Project: https://ycliu93.github.io/projects/unbiasedteacher.html
👉 @bigdata_1
👍2
Deep Learning & Art: Neural Style Transfer
https://datascience-enthusiast.com/DL/Art_Generation_with_Neural_Style_Transfer_v2.html
👉 @bigdata_1
https://datascience-enthusiast.com/DL/Art_Generation_with_Neural_Style_Transfer_v2.html
👉 @bigdata_1
👍2
🔥 Model Search by Google
Automatically build and deploy state-of-the-art machine learning models on structured data.
Github: https://github.com/google/model_search
Paper: https://pdfs.semanticscholar.org/1bca/d4cdfbc01fbb60a815660d034e561843d67a.pdf
Project: https://cloud.google.com/automl-tables
👉 @bigdata_1
Automatically build and deploy state-of-the-art machine learning models on structured data.
Github: https://github.com/google/model_search
Paper: https://pdfs.semanticscholar.org/1bca/d4cdfbc01fbb60a815660d034e561843d67a.pdf
Project: https://cloud.google.com/automl-tables
👉 @bigdata_1
👍1
Domain specific BERT representation for Named Entity Recognition of lab protocol
Github: https://github.com/tejasvaidhyadev/NER_Lab_Protocols
Website: http://noisy-text.github.io/2020/wlp-task.html
Paper: https://arxiv.org/pdf/2012.11145.pdf
👉 @bigdata_1
Github: https://github.com/tejasvaidhyadev/NER_Lab_Protocols
Website: http://noisy-text.github.io/2020/wlp-task.html
Paper: https://arxiv.org/pdf/2012.11145.pdf
👉 @bigdata_1
👍2
🚀 DALL-E Zero-Shot Text-to-Image Generation
Github: https://github.com/openai/DALL-E
Paper: https://arxiv.org/abs/2102.12092
OpenAi: https://openai.com/blog/dall-e/
👉 @bigdata_1
Github: https://github.com/openai/DALL-E
Paper: https://arxiv.org/abs/2102.12092
OpenAi: https://openai.com/blog/dall-e/
👉 @bigdata_1
RECCON: Recognizing Emotion Cause in CONversations
Github: https://github.com/declare-lab/RECCON
Paper: https://arxiv.org/pdf/2012.11820.pdf
👉 @bigdata_1
Github: https://github.com/declare-lab/RECCON
Paper: https://arxiv.org/pdf/2012.11820.pdf
👉 @bigdata_1
👍1
Полный курс по искусственному интеллекту CS221 от университета Stanford
Stanford CS221: Artificial Intelligence: Principles and Techniques | Autumn 2019
Lecture 1: Overview
Lecture 2: Machine Learning 1 - Linear Classifiers, SGD
Lecture 3: Machine Learning 2 - Features, Neural Networks
Lecture 4: Machine Learning 3 - Generalization, K-means
Lecture 5: Search 1 - Dynamic Programming, Uniform Cost Search
Lecture 6: Search 2 - A*
Lecture 7: Markov Decision Processes - Value Iteration
Lecture 8: Markov Decision Processes - Reinforcement Learning
Lecture 9: Game Playing 1 - Minimax, Alpha-beta Pruning
Lecture 10: Game Playing 2 - TD Learning, Game Theory
Lecture 11: Factor Graphs 1 - Constraint Satisfaction Problems
Lecture 12: Factor Graphs 2 - Conditional Independence
Lecture 13: Bayesian Networks 1 - Inference
Lecture 14: Bayesian Networks 2 - Forward-Backward
Lecture 15: Bayesian Networks 3 - Maximum Likelihood
Lecture 16: Logic 1 - Propositional Logic
Lecture 17: Logic 2 - First-order Logic
Lecture 18: Deep Learning
Lecture 19: Conclusion
https://www.youtube.com/playlist?list=PLoROMvodv4rO1NB9TD4iUZ3qghGEGtqNX
👉 @bigdata_1
Stanford CS221: Artificial Intelligence: Principles and Techniques | Autumn 2019
Lecture 1: Overview
Lecture 2: Machine Learning 1 - Linear Classifiers, SGD
Lecture 3: Machine Learning 2 - Features, Neural Networks
Lecture 4: Machine Learning 3 - Generalization, K-means
Lecture 5: Search 1 - Dynamic Programming, Uniform Cost Search
Lecture 6: Search 2 - A*
Lecture 7: Markov Decision Processes - Value Iteration
Lecture 8: Markov Decision Processes - Reinforcement Learning
Lecture 9: Game Playing 1 - Minimax, Alpha-beta Pruning
Lecture 10: Game Playing 2 - TD Learning, Game Theory
Lecture 11: Factor Graphs 1 - Constraint Satisfaction Problems
Lecture 12: Factor Graphs 2 - Conditional Independence
Lecture 13: Bayesian Networks 1 - Inference
Lecture 14: Bayesian Networks 2 - Forward-Backward
Lecture 15: Bayesian Networks 3 - Maximum Likelihood
Lecture 16: Logic 1 - Propositional Logic
Lecture 17: Logic 2 - First-order Logic
Lecture 18: Deep Learning
Lecture 19: Conclusion
https://www.youtube.com/playlist?list=PLoROMvodv4rO1NB9TD4iUZ3qghGEGtqNX
👉 @bigdata_1
🔥3👍2
When Attention Meets Fast Recurrence: Training Language Models with Reduced Compute
Github: https://github.com/asappresearch/sru
Paper: https://arxiv.org/abs/2102.12459v1
Project: https://www.asapp.com/blog/reducing-the-high-cost-of-training-nlp-models-with-sru/
👉 @bigdata_1
Github: https://github.com/asappresearch/sru
Paper: https://arxiv.org/abs/2102.12459v1
Project: https://www.asapp.com/blog/reducing-the-high-cost-of-training-nlp-models-with-sru/
👉 @bigdata_1
👍1
SWA Object Detection
Github: https://github.com/hyz-xmaster/swa_object_detection
Paper: https://arxiv.org/abs/2012.12645
👉 @bigdata_1
Github: https://github.com/hyz-xmaster/swa_object_detection
Paper: https://arxiv.org/abs/2012.12645
👉 @bigdata_1
👍2