This media is not supported in your browser
VIEW IN TELEGRAM
Audio-Visual Segmentation (AVS)
AVS to estimate pixel-wise segmentation masks for all the sounding objects, no matter the number of visible sounding objects
Большой датасет и модель сегментации объектов, издающих звук на видео.
🖥 Github: https://github.com/OpenNLPLab/AVSBench
✅️ Paper: https://arxiv.org/pdf/2301.13190.pdf
⭐️ Project: https://opennlplab.github.io/AVSBench/
✅️ Dataset: http://www.avlbench.opennlplab.cn/download
🔹 Benchmark: http://www.avlbench.opennlplab.cn/
👉 @bigdata_1
AVS to estimate pixel-wise segmentation masks for all the sounding objects, no matter the number of visible sounding objects
Большой датасет и модель сегментации объектов, издающих звук на видео.
🖥 Github: https://github.com/OpenNLPLab/AVSBench
✅️ Paper: https://arxiv.org/pdf/2301.13190.pdf
⭐️ Project: https://opennlplab.github.io/AVSBench/
✅️ Dataset: http://www.avlbench.opennlplab.cn/download
🔹 Benchmark: http://www.avlbench.opennlplab.cn/
👉 @bigdata_1
👍2
Conditional Flow Matching
Conditional Flow Matching is a fast way to train Continuous Normalizing Flow models.
🖥 Github: https://github.com/atong01/conditional-flow-matching
✅️ Paper: https://arxiv.org/abs/2302.00482v1
⭐️ Dataset: https://paperswithcode.com/dataset/celeba
👉 @bigdata_1
Conditional Flow Matching is a fast way to train Continuous Normalizing Flow models.
🖥 Github: https://github.com/atong01/conditional-flow-matching
✅️ Paper: https://arxiv.org/abs/2302.00482v1
⭐️ Dataset: https://paperswithcode.com/dataset/celeba
👉 @bigdata_1
❤1👌1
This media is not supported in your browser
VIEW IN TELEGRAM
TEXTure: Semantic Texture Transfer using Text Tokens
Novel method for text-guided generation, editing, and transfer of textures for 3D shapes. Leveraging a pretrained depth-to-image diffusion mode
TEXTure принимает исходный рендер и текстовое описание и рисует модель с высококачественными текстурами, используя итеративный процесс на основе диффузии.
🖥 Github: https://github.com/TEXTurePaper/TEXTurePaper
✅️ Paper: https://arxiv.org/abs/2302.01721v1
⭐️ Project: https://texturepaper.github.io/TEXTurePaper/
👉 @bigdata_1
Novel method for text-guided generation, editing, and transfer of textures for 3D shapes. Leveraging a pretrained depth-to-image diffusion mode
TEXTure принимает исходный рендер и текстовое описание и рисует модель с высококачественными текстурами, используя итеративный процесс на основе диффузии.
🖥 Github: https://github.com/TEXTurePaper/TEXTurePaper
✅️ Paper: https://arxiv.org/abs/2302.01721v1
⭐️ Project: https://texturepaper.github.io/TEXTurePaper/
👉 @bigdata_1
👍4❤1
PyGlove: Manipulating Python Programs
Manipulating Python Programs with symbolic object-oriented programming .
PyGlove от Google - методология символьного объектно-ориентированного программирования на Python, позволяет напрямую манипулировать объектами (создание ML моделей на метаязыке), что значительно упрощает написание метапрограмм. Подробный пример efficiently_exchange_ml_ideas_as_code
pip install pyglove
🖥 Github: https://github.com/google/pyglove
📃 Docs: https://pyglove.readthedocs.io/
✅️ Paper: https://arxiv.org/abs/2302.01918v1
⭐️ Project: https://texturepaper.github.io/TEXTurePaper/
👉 @bigdata_1
Manipulating Python Programs with symbolic object-oriented programming .
PyGlove от Google - методология символьного объектно-ориентированного программирования на Python, позволяет напрямую манипулировать объектами (создание ML моделей на метаязыке), что значительно упрощает написание метапрограмм. Подробный пример efficiently_exchange_ml_ideas_as_code
pip install pyglove
🖥 Github: https://github.com/google/pyglove
📃 Docs: https://pyglove.readthedocs.io/
✅️ Paper: https://arxiv.org/abs/2302.01918v1
⭐️ Project: https://texturepaper.github.io/TEXTurePaper/
👉 @bigdata_1
👍1
This media is not supported in your browser
VIEW IN TELEGRAM
Open-sources PhyCV: The First Physics-inspired Computer Vision Library
Unlike traditional algorithms that are a sequence of hand-crafted empirical rules, physics-inspired algorithms leverage physical laws of nature as blueprints.
PhyCV - новый класс алгоритмов компьютерного зрения, высокой точности, которые имитируют распространение света через физические объекты. Алгоритмы основаны на уравнениях дифракции света в оптических системах.
pip install phycv
🖥 Github: https://github.com/JalaliLabUCLA/phycv
📝 Paper: https://arxiv.org/abs/2301.12531v1
🎥 Video: https://www.youtube.com/watch?v=PJXXwXVyjdk&embeds_euri=https%3A%2F%2Fwww.imveurope.com%2F&feature=emb_logo
⭐️ Project: https://photonics.ucla.edu/2022/05/12/jalali-lab-open-sources-phycv-a-physics-inspired-computer-vision-library/
👉 @bigdata_1
Unlike traditional algorithms that are a sequence of hand-crafted empirical rules, physics-inspired algorithms leverage physical laws of nature as blueprints.
PhyCV - новый класс алгоритмов компьютерного зрения, высокой точности, которые имитируют распространение света через физические объекты. Алгоритмы основаны на уравнениях дифракции света в оптических системах.
pip install phycv
🖥 Github: https://github.com/JalaliLabUCLA/phycv
📝 Paper: https://arxiv.org/abs/2301.12531v1
🎥 Video: https://www.youtube.com/watch?v=PJXXwXVyjdk&embeds_euri=https%3A%2F%2Fwww.imveurope.com%2F&feature=emb_logo
⭐️ Project: https://photonics.ucla.edu/2022/05/12/jalali-lab-open-sources-phycv-a-physics-inspired-computer-vision-library/
👉 @bigdata_1
❤🔥3👍1
This media is not supported in your browser
VIEW IN TELEGRAM
Gen-1: The Next Step Forward for Generative AI
Use words and images to generate new videos out of existing
Новейший ИИ-алгоритм Gen-1, который может изменить стиль видео по текстовому запросу или картинке.
ones.
https://research.runwayml.com/gen1
⭐️ Project: https://research.runwayml.com/gen1
✅️ Paper: https://arxiv.org/abs/2302.03011
📌Request form: https://docs.google.com/forms/d/e/1FAIpQLSfU0O_i1dym30hEI33teAvCRQ1i8UrGgXd4BPrvBWaOnDgs9g/viewform
👉 @bigdata_1
Use words and images to generate new videos out of existing
Новейший ИИ-алгоритм Gen-1, который может изменить стиль видео по текстовому запросу или картинке.
ones.
https://research.runwayml.com/gen1
⭐️ Project: https://research.runwayml.com/gen1
✅️ Paper: https://arxiv.org/abs/2302.03011
📌Request form: https://docs.google.com/forms/d/e/1FAIpQLSfU0O_i1dym30hEI33teAvCRQ1i8UrGgXd4BPrvBWaOnDgs9g/viewform
👉 @bigdata_1
👍1
Hard Prompts Made Easy: Discrete Prompt Tuning for Language Models
From a given image, we first optimize a hard prompt using the PEZ algorithm and CLIP encoder.
Модель для преобразование изображений в текстовые подсказки для стабильной диффузии.
Автоматически генерирует текстовые подсказки как для преобразования текста в изображение, так и для преобразования текста в текст.
🖥 Github: https://github.com/YuxinWenRick/hard-prompts-made-easy
🖥 Colab: https://colab.research.google.com/drive/1VSFps4siwASXDwhK_o29dKA9COvTnG8A?usp=sharing
✅️ Paper: hhttps://arxiv.org/abs/2302.03668v1
⭐️ Dataset: https://paperswithcode.com/dataset/ag-news
👉 @bigdata_1
From a given image, we first optimize a hard prompt using the PEZ algorithm and CLIP encoder.
Модель для преобразование изображений в текстовые подсказки для стабильной диффузии.
Автоматически генерирует текстовые подсказки как для преобразования текста в изображение, так и для преобразования текста в текст.
🖥 Github: https://github.com/YuxinWenRick/hard-prompts-made-easy
🖥 Colab: https://colab.research.google.com/drive/1VSFps4siwASXDwhK_o29dKA9COvTnG8A?usp=sharing
✅️ Paper: hhttps://arxiv.org/abs/2302.03668v1
⭐️ Dataset: https://paperswithcode.com/dataset/ag-news
👉 @bigdata_1
❤1👍1
This media is not supported in your browser
VIEW IN TELEGRAM
In-N-Out: Face Video Inversion and Editing with Volumetric Decomposition
The core idea is to represent the face in a video using two neural radiance fields, one for in-distribution and the other for out-of-distribution data, and compose them together for reconstruction.
Новая модель от Adobe Research, для редактирования видео с поддержкой 3D, позволяет манипулировать объектами в условиях сдвига данных. (OOD generalization).
⭐️ Project: https://in-n-out-3d.github.io/
✅️ Paper: https://arxiv.org/abs/2302.03668v1
👉 @bigdata_1
The core idea is to represent the face in a video using two neural radiance fields, one for in-distribution and the other for out-of-distribution data, and compose them together for reconstruction.
Новая модель от Adobe Research, для редактирования видео с поддержкой 3D, позволяет манипулировать объектами в условиях сдвига данных. (OOD generalization).
⭐️ Project: https://in-n-out-3d.github.io/
✅️ Paper: https://arxiv.org/abs/2302.03668v1
👉 @bigdata_1
👍1
PEFT: Parameter-Efficient Fine-Tuning of Billion-Scale Models on Low-Resource Hardware
Parameter-Efficient Fine-Tuning (PEFT) methods enable efficient adaptation of pre-trained language models (PLMs) to various downstream applications without fine-tuning all the model's paramete
PEFT позволяют добиться высокой производительности моделей на слабом железе, с небольшым количество обучаемых данных, .
🖥 Github: https://github.com/huggingface/peft
💨 Hugging Face: https://huggingface.co/blog/peft
🖥 Colab: https://colab.research.google.com/drive/1jCkpikz0J2o20FBQmYmAGdiKmJGOMo-o
👉 @bigdata_1
Parameter-Efficient Fine-Tuning (PEFT) methods enable efficient adaptation of pre-trained language models (PLMs) to various downstream applications without fine-tuning all the model's paramete
PEFT позволяют добиться высокой производительности моделей на слабом железе, с небольшым количество обучаемых данных, .
👉 @bigdata_1
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
🔥Хотите повысить производительность работы с большими данными?
🦾 Ваша база знаний начинается с Cassandra!
Присоединяйтесь к открытому уроку «Интеграция Cassandra с приложениями».
Дата: 18 декабря в 20:00 мск
Cassandra — одна из самых востребованных NoSQL-баз для высоконагруженных систем. На уроке вы узнаете, как интегрировать её с приложениями и BI-инструментами, работать с данными и создавать простое приложение для Cassandra.
Вы сможете освоить технику загрузки больших объемов данных, изучите, как приложения могут эффективно взаимодействовать с базами на Cassandra, и получите важные навыки в аналитике!
🔗 Ссылка на регистрацию: https://vk.cc/cFXX87
Присоединяйтесь к открытому уроку «Интеграция Cassandra с приложениями».
Дата: 18 декабря в 20:00 мск
Cassandra — одна из самых востребованных NoSQL-баз для высоконагруженных систем. На уроке вы узнаете, как интегрировать её с приложениями и BI-инструментами, работать с данными и создавать простое приложение для Cassandra.
Вы сможете освоить технику загрузки больших объемов данных, изучите, как приложения могут эффективно взаимодействовать с базами на Cassandra, и получите важные навыки в аналитике!
🔗 Ссылка на регистрацию: https://vk.cc/cFXX87
Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576, www.otus.ru
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1👍1🆒1
💭 Speech Synthesis, Recognition, and More With SpeechT5
Новая модель для синтеза и распозновании речи SpeechT5 от huggingface.
▪преобразование речи в текст для автоматического распознавания речи и идентификации говорящего
▪преобразование текста в речь для синтеза звука
▪речь в речь для преобразования речи в разные голоса или улучшения речи.
🖥 Github: https://huggingface.co/blog/speecht5
💨 Demo: https://huggingface.co/spaces/Matthijs/speecht5-asr-demo
🗣 Voice Conversion: https://huggingface.co/spaces/Matthijs/speecht5-vc-demo
🗳Automatic Speech Recognition: https://huggingface.co/spaces/Matthijs/speecht5-asr-demo
👉 @bigdata_1
Новая модель для синтеза и распозновании речи SpeechT5 от huggingface.
▪преобразование речи в текст для автоматического распознавания речи и идентификации говорящего
▪преобразование текста в речь для синтеза звука
▪речь в речь для преобразования речи в разные голоса или улучшения речи.
🗣 Voice Conversion: https://huggingface.co/spaces/Matthijs/speecht5-vc-demo
🗳Automatic Speech Recognition: https://huggingface.co/spaces/Matthijs/speecht5-asr-demo
👉 @bigdata_1
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
Benchmarking Omni-Vision Representation through the Lens of Visual Realms
Github: https://github.com/ZhangYuanhan-AI/OmniBenchmark
Project: https://zhangyuanhan-ai.github.io/OmniBenchmark
Paper: https://arxiv.org/abs/2207.07106v1
Competition: https://codalab.lisn.upsaclay.fr/competitions/6043
👉 @bigdata_1
Github: https://github.com/ZhangYuanhan-AI/OmniBenchmark
Project: https://zhangyuanhan-ai.github.io/OmniBenchmark
Paper: https://arxiv.org/abs/2207.07106v1
Competition: https://codalab.lisn.upsaclay.fr/competitions/6043
👉 @bigdata_1
👍1
🔥 Шпаргалка по машинному обучению!
В этой шпаргалке выделены следующие ключевые направления:
⭐ Регрессия: OLS, SVM, Random Forest
⭐ Классификация: Naive Bayes, Decision Tree, нейронные сети
⭐ Кластеризация: K-Means, DBSCAN
⭐ Компьютерное зрение: CNN, YOLO, GANs
⭐ NLP/LLM: GPT, BERT, Word2Vec
⭐ Рекомендательные системы, прогнозирование
👉 @bigdata_1
В этой шпаргалке выделены следующие ключевые направления:
⭐ Регрессия: OLS, SVM, Random Forest
⭐ Классификация: Naive Bayes, Decision Tree, нейронные сети
⭐ Кластеризация: K-Means, DBSCAN
⭐ Компьютерное зрение: CNN, YOLO, GANs
⭐ NLP/LLM: GPT, BERT, Word2Vec
⭐ Рекомендательные системы, прогнозирование
👉 @bigdata_1
👍6
DeepFilterNet
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) using on Deep Filtering.
Github: https://github.com/rikorose/deepfilternet
Paper: https://arxiv.org/abs/2205.05474v1
Demo: https://huggingface.co/spaces/hshr/DeepFilterNet2
👉 @bigdata_1
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) using on Deep Filtering.
Github: https://github.com/rikorose/deepfilternet
Paper: https://arxiv.org/abs/2205.05474v1
Demo: https://huggingface.co/spaces/hshr/DeepFilterNet2
👉 @bigdata_1
👍1
Optimizing Relevance Maps of Vision Transformers Improves Robustness
This code allows to finetune the explainability maps of Vision Transformers to enhance robustness.
Github: https://github.com/hila-chefer/robustvit
Colab: https://colab.research.google.com/github/hila-chefer/RobustViT/blob/master/RobustViT.ipynb
Paper: https://arxiv.org/abs/2206.01161
Dataset: https://github.com/UnsupervisedSemanticSegmentation/ImageNet-S
👉 @bigdata_1
This code allows to finetune the explainability maps of Vision Transformers to enhance robustness.
Github: https://github.com/hila-chefer/robustvit
Colab: https://colab.research.google.com/github/hila-chefer/RobustViT/blob/master/RobustViT.ipynb
Paper: https://arxiv.org/abs/2206.01161
Dataset: https://github.com/UnsupervisedSemanticSegmentation/ImageNet-S
👉 @bigdata_1
👍1
Cleanlab
Стандартный пакет ИИ, ориентированный на данные, для обеспечения качества данных и машинного обучения с использованием беспорядочных, реальных данных и меток.
👣 Docs: https://docs.cleanlab.ai/
📌 Examples: https://github.com/cleanlab/examples
⏩ Paprer: https://arxiv.org/abs/2211.13895v1
⭐️ Datasets: https://paperswithcode.com/dataset/celeba
https://github.com/cleanlab/cleanlab
👉 @bigdata_1
Стандартный пакет ИИ, ориентированный на данные, для обеспечения качества данных и машинного обучения с использованием беспорядочных, реальных данных и меток.
👣 Docs: https://docs.cleanlab.ai/
📌 Examples: https://github.com/cleanlab/examples
⏩ Paprer: https://arxiv.org/abs/2211.13895v1
⭐️ Datasets: https://paperswithcode.com/dataset/celeba
https://github.com/cleanlab/cleanlab
👉 @bigdata_1
❤1
Time-series Transformer Generative Adversarial Networks
Github: https://github.com/jsyoon0823/TimeGAN
Paper: https://arxiv.org/abs/2205.11164v1
Stock data: https://finance.yahoo.com/quote/GOOG/history
Energy data: http://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
👉 @bigdata_1
Github: https://github.com/jsyoon0823/TimeGAN
Paper: https://arxiv.org/abs/2205.11164v1
Stock data: https://finance.yahoo.com/quote/GOOG/history
Energy data: http://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
👉 @bigdata_1
👍2
This media is not supported in your browser
VIEW IN TELEGRAM
LEGO-Net: Learning Regular Rearrangements of Objects in Rooms
Model takes an input messy scene and attempts to clean the scene via iterative denoising.
LEGO-Net итеративный метод обучения регулярной перестановке объектов в захламленных комнатах.
💨 Project: https://ivl.cs.brown.edu/#/projects/lego-net
✅️ Paper: https://arxiv.org/pdf/2301.09629.pdf
👉 @bigdata_1
Model takes an input messy scene and attempts to clean the scene via iterative denoising.
LEGO-Net итеративный метод обучения регулярной перестановке объектов в захламленных комнатах.
👉 @bigdata_1
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
This media is not supported in your browser
VIEW IN TELEGRAM
3D-aware Conditional Image Synthesis (pix2pix3D)
Model synthesizes a 3d photo from different viewpoints.
3D генеративная модель для управляемого синтеза фотореалистичных изображений.
🖥 Github: https://github.com/dunbar12138/pix2pix3D
⭐️ Project: https://huggingface.co/TencentARC/T2I-Adapter
⭐️ Paper: https://arxiv.org/abs/2302.08509
💻 Dataset: https://paperswithcode.com/dataset/coco
👉 @bigdata_1
Model synthesizes a 3d photo from different viewpoints.
3D генеративная модель для управляемого синтеза фотореалистичных изображений.
👉 @bigdata_1
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4
EdgeYOLO reaches 34FPS with 50.6% AP in COCO2017 dataset and 25.9% AP in VisDrone2019 (image input size is 640x640, batch=16, post-process included).
Новый детектор обнаружения небольших объектов с высокой точностью, не требующий больших вычислительных мощностей.
👉 @bigdata_1
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥3❤1👍1
This media is not supported in your browser
VIEW IN TELEGRAM
MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation
MultiDiffusion - модель, позволяющая создавать любые изображения, используя предварительно обученную модель диффузии текста в изображение, без дополнительного обучения и настройки.
⭐️ Project: https://multidiffusion.github.io/
🖥 Github: https://github.com/omerbt/MultiDiffusion
⭐️ Paper: https://arxiv.org/abs/2302.08113v1
💻 Dataset: https://paperswithcode.com/dataset/coco
👉 @bigdata_1
MultiDiffusion - модель, позволяющая создавать любые изображения, используя предварительно обученную модель диффузии текста в изображение, без дополнительного обучения и настройки.
👉 @bigdata_1
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤2😍1