WildWood: a new Random Forest algorithm
Github: https://github.com/pyensemble/wildwood
Paper: https://arxiv.org/abs/2109.08010v1
Documentation: https://wildwood.readthedocs.io/
👉 @bigdata_1
Github: https://github.com/pyensemble/wildwood
Paper: https://arxiv.org/abs/2109.08010v1
Documentation: https://wildwood.readthedocs.io/
👉 @bigdata_1
👍1
Textual Entailment for Event Argument Extraction: Zero- and Few-Shot with Multi-Source Learning
Github: https://github.com/osainz59/Ask2Transformers
Instructions: https://github.com/facebookresearch/metaseq/blob/main/docs/setup.md
Paper: https://arxiv.org/abs/2205.01376v1
Dataset: https://paperswithcode.com/dataset/snli
👉 @bigdata_1
Github: https://github.com/osainz59/Ask2Transformers
Instructions: https://github.com/facebookresearch/metaseq/blob/main/docs/setup.md
Paper: https://arxiv.org/abs/2205.01376v1
Dataset: https://paperswithcode.com/dataset/snli
👉 @bigdata_1
👍1
Simple Entity-Centric Questions Challenge Dense Retrievers
Github: https://github.com/princeton-nlp/entityquestions
Paper: https://arxiv.org/abs/2109.08535v1
Dataset: https://paperswithcode.com/dataset/natural-questions
👉 @bigdata_1
Github: https://github.com/princeton-nlp/entityquestions
Paper: https://arxiv.org/abs/2109.08535v1
Dataset: https://paperswithcode.com/dataset/natural-questions
👉 @bigdata_1
👍2
Textless NLP: Generating expressive speech from raw audio
Facebook Ai: https://ai.facebook.com/blog/textless-nlp-generating-expressive-speech-from-raw-audio/
Examples: https://speechbot.github.io/pgslm/
Code: https://github.com/pytorch/fairseq/tree/master/examples/textless_nlp/gslm
Paper: https://arxiv.org/abs/2102.01192
👉 @bigdata_1
Facebook Ai: https://ai.facebook.com/blog/textless-nlp-generating-expressive-speech-from-raw-audio/
Examples: https://speechbot.github.io/pgslm/
Code: https://github.com/pytorch/fairseq/tree/master/examples/textless_nlp/gslm
Paper: https://arxiv.org/abs/2102.01192
👉 @bigdata_1
👍3
Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning
Github: https://github.com/ethz-asl/Learn-to-Calibrate
Paper: https://arxiv.org/abs/2109.14974v1
👉 @bigdata_1
Github: https://github.com/ethz-asl/Learn-to-Calibrate
Paper: https://arxiv.org/abs/2109.14974v1
👉 @bigdata_1
👍2
Dynamic Slimmable Network (DS-Net)
Github: https://github.com/M3DV/AlignShift
Paper: https://arxiv.org/abs/2109.10060v1
👉 @bigdata_1
Github: https://github.com/M3DV/AlignShift
Paper: https://arxiv.org/abs/2109.10060v1
👉 @bigdata_1
👍2
EasyNLP is an easy-to-use NLP development and application toolkit in PyTorch
$ pip install pai-easynlp.
Github: https://github.com/alibaba/EasyNLP
Paper: https://arxiv.org/abs/2205.03071v1
Dataset: https://paperswithcode.com/dataset/natural-questions
Documentation: https://www.yuque.com/easyx/easynlp/kkhkai
👉 @bigdata_1
$ pip install pai-easynlp.
Github: https://github.com/alibaba/EasyNLP
Paper: https://arxiv.org/abs/2205.03071v1
Dataset: https://paperswithcode.com/dataset/natural-questions
Documentation: https://www.yuque.com/easyx/easynlp/kkhkai
👉 @bigdata_1
👍2
Awakening Latent Grounding from Pretrained Language Models for Semantic Parsing
Github: https://github.com/microsoft/ContextualSP
Paper: https://arxiv.org/abs/2109.10540v1
👉 @bigdata_1
Github: https://github.com/microsoft/ContextualSP
Paper: https://arxiv.org/abs/2109.10540v1
👉 @bigdata_1
👍2
DeepFilterNet
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) using on Deep Filtering.
Github: https://github.com/rikorose/deepfilternet
Paper: https://arxiv.org/abs/2205.05474v1
Demo: https://huggingface.co/spaces/hshr/DeepFilterNet2
👉 @bigdata_1
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) using on Deep Filtering.
Github: https://github.com/rikorose/deepfilternet
Paper: https://arxiv.org/abs/2205.05474v1
Demo: https://huggingface.co/spaces/hshr/DeepFilterNet2
👉 @bigdata_1
👍2
Hierarchical Memory Matching Network for Video Object Segmentation
Github: https://github.com/hongje/hmmn
Paper: https://arxiv.org/abs/2109.11404v1
Dataset: https://paperswithcode.com/dataset/davis-2016
👉 @bigdata_1
Github: https://github.com/hongje/hmmn
Paper: https://arxiv.org/abs/2109.11404v1
Dataset: https://paperswithcode.com/dataset/davis-2016
👉 @bigdata_1
👍1
KG-SP: Knowledge Guided Simple Primitives for Open World Compositional Zero-Shot Learning
Github: https://github.com/explainableml/kg-sp
Paper: https://arxiv.org/abs/2205.06784v1
Dataset: https://paperswithcode.com/dataset/conceptnet
👉 @bigdata_1
Github: https://github.com/explainableml/kg-sp
Paper: https://arxiv.org/abs/2205.06784v1
Dataset: https://paperswithcode.com/dataset/conceptnet
👉 @bigdata_1
👍1
Deep Social Force
Github: https://github.com/svenkreiss/socialforce
Paper: https://arxiv.org/abs/2109.12081v1
👉 @bigdata_1
Github: https://github.com/svenkreiss/socialforce
Paper: https://arxiv.org/abs/2109.12081v1
👉 @bigdata_1
👍1
OWL-ViT: Open-World Object Detection with Vision Transformers
OWL-ViT is an open-vocabulary object detector.
Github: https://github.com/google-research/scenic/tree/main/scenic/projects/owl_vit
Paper: https://arxiv.org/abs/2205.06230
Colab: https://colab.research.google.com/github/google-research/scenic/blob/main/scenic/projects/owl_vit/notebooks/OWL_ViT_minimal_example.ipynb
Dataset: https://paperswithcode.com/dataset/objects365
👉 @bigdata_1
OWL-ViT is an open-vocabulary object detector.
Github: https://github.com/google-research/scenic/tree/main/scenic/projects/owl_vit
Paper: https://arxiv.org/abs/2205.06230
Colab: https://colab.research.google.com/github/google-research/scenic/blob/main/scenic/projects/owl_vit/notebooks/OWL_ViT_minimal_example.ipynb
Dataset: https://paperswithcode.com/dataset/objects365
👉 @bigdata_1
👍1
TSM: Temporal Shift Module for Efficient Video Understanding
Github: https://github.com/MIT-HAN-LAB/temporal-shift-module
Paper: https://arxiv.org/abs/1811.08383
Demo: https://www.youtube.com/watch?v=0T6u7S_gq-4
👉 @bigdata_1
Github: https://github.com/MIT-HAN-LAB/temporal-shift-module
Paper: https://arxiv.org/abs/1811.08383
Demo: https://www.youtube.com/watch?v=0T6u7S_gq-4
👉 @bigdata_1
AdaVAE: Exploring Adaptive GPT-2s in Variational Auto-Encoders for Language Modeling
First VAE framework empowered with adaptive GPT-2s (AdaVAE).
Github: https://github.com/ImKeTT/adavae
Paper: https://arxiv.org/abs/2205.05862v1
Task: https://paperswithcode.com/task/representation-learning
👉 @bigdata_1
First VAE framework empowered with adaptive GPT-2s (AdaVAE).
Github: https://github.com/ImKeTT/adavae
Paper: https://arxiv.org/abs/2205.05862v1
Task: https://paperswithcode.com/task/representation-learning
👉 @bigdata_1
TSM: Temporal Shift Module for Efficient Video Understanding
Github: https://github.com/nikitakit/self-attentive-parser
Paper: https://arxiv.org/abs/2109.12814v1
Dataset: https://paperswithcode.com/dataset/penn-treebank
👉 @bigdata_1
Github: https://github.com/nikitakit/self-attentive-parser
Paper: https://arxiv.org/abs/2109.12814v1
Dataset: https://paperswithcode.com/dataset/penn-treebank
👉 @bigdata_1
👍2
Efficient and performance-portable vector software
CPUs provide SIMD/vector instructions that apply the same operation to multiple data items. This can reduce energy usage e.g. fivefold because fewer instructions are executed. We also often see 5-10x speedups.
Code: https://github.com/google/highway
Paper: https://arxiv.org/abs/2205.05982v1
Testing: https://github.com/google/highway/blob/master/g3doc/release_testing_process.md
👉 @bigdata_1
CPUs provide SIMD/vector instructions that apply the same operation to multiple data items. This can reduce energy usage e.g. fivefold because fewer instructions are executed. We also often see 5-10x speedups.
Code: https://github.com/google/highway
Paper: https://arxiv.org/abs/2205.05982v1
Testing: https://github.com/google/highway/blob/master/g3doc/release_testing_process.md
👉 @bigdata_1
❤1👍1
Towards Flexible Blind JPEG Artifacts Removal
Github: https://github.com/jiaxi-jiang/fbcnn
Paper: https://arxiv.org/abs/2109.14573v1
👉 @bigdata_1
Github: https://github.com/jiaxi-jiang/fbcnn
Paper: https://arxiv.org/abs/2109.14573v1
👉 @bigdata_1
👍1
[RK-Net]Joint Representation Learning and Keypoint Detection for Cross-view Geo-localization
Github: https://github.com/AggMan96/RK-Net
Paper: https://zhunzhong.site/paper/RK_Net.pdf
Dataset: https://paperswithcode.com/dataset/university-1652
👉 @bigdata_1
Github: https://github.com/AggMan96/RK-Net
Paper: https://zhunzhong.site/paper/RK_Net.pdf
Dataset: https://paperswithcode.com/dataset/university-1652
👉 @bigdata_1
👍2
Evaluation of Deep Neural Network Domain Adaptation Techniques for Image Recognition
Github: https://github.com/agrija9/deep-unsupervised-domain-adaptation
Paper: https://arxiv.org/abs/2109.13420v1
Dataset: https://paperswithcode.com/dataset/office-31
👉 @bigdata_1
Github: https://github.com/agrija9/deep-unsupervised-domain-adaptation
Paper: https://arxiv.org/abs/2109.13420v1
Dataset: https://paperswithcode.com/dataset/office-31
👉 @bigdata_1
Group R-CNN for Point-based Weakly Semi-supervised Object Detection
Instance-aware representation learning which consists of instance-aware feature enhancement and instance-aware parameter generation to overcome this issue.
Code: https://github.com/jshilong/grouprcnn
Installation: https://mmdetection.readthedocs.io/en/v2.18.1/get_started.html#installation
Paper: https://arxiv.org/abs/2205.05920v1
Task: https://paperswithcode.com/task/object-detection
Dataset: https://paperswithcode.com/dataset/coco
👉 @bigdata_1
Instance-aware representation learning which consists of instance-aware feature enhancement and instance-aware parameter generation to overcome this issue.
Code: https://github.com/jshilong/grouprcnn
Installation: https://mmdetection.readthedocs.io/en/v2.18.1/get_started.html#installation
Paper: https://arxiv.org/abs/2205.05920v1
Task: https://paperswithcode.com/task/object-detection
Dataset: https://paperswithcode.com/dataset/coco
👉 @bigdata_1