Beyond Self-Supervision: A Simple Yet Effective Network Distillation Alternative to Improve Backbones
Github: https://github.com/PaddlePaddle/PaddleClas
Paper: https://arxiv.org/abs/2103.05959v1
👉 @bigdata_1
Github: https://github.com/PaddlePaddle/PaddleClas
Paper: https://arxiv.org/abs/2103.05959v1
👉 @bigdata_1
GitHub
GitHub - PaddlePaddle/PaddleClas: A treasure chest for visual classification and recognition powered by PaddlePaddle
A treasure chest for visual classification and recognition powered by PaddlePaddle - PaddlePaddle/PaddleClas
👍2
Media is too big
VIEW IN TELEGRAM
Введение в Машинное Обучение и Data Science
Введение в методики Машинного Обучения и Data Science
Разведочный Анализ Данных (Exploratory Data Analysis, EDA)
Категориальные признаки (разведочный анализ данных)
Разделение Данных и Метрики
Необходимая Теория (Часть 1)
Необходимая Теория (Часть 2)
Полный Пайплайн (Pipeline)
Простая Линейная Регрессия
Множественная Линейная Регрессия
Логистическая Регрессия
Полный курс на youtube
👉 @bigdata_1
Введение в методики Машинного Обучения и Data Science
Разведочный Анализ Данных (Exploratory Data Analysis, EDA)
Категориальные признаки (разведочный анализ данных)
Разделение Данных и Метрики
Необходимая Теория (Часть 1)
Необходимая Теория (Часть 2)
Полный Пайплайн (Pipeline)
Простая Линейная Регрессия
Множественная Линейная Регрессия
Логистическая Регрессия
Полный курс на youtube
👉 @bigdata_1
👍2🔥1
Deepmind's Generally capable agents emerge from open-ended play
Blog : https://deepmind.com/blog/article/generally-capable-agents-emerge-from-open-ended-play
Paper: https://deepmind.com/research/publications/open-ended-learning-leads-to-generally-capable-agents
DeepMind Research: https://github.com/deepmind/deepmind-research
Video: https://www.youtube.com/watch?v=lTmL7jwFfdw&ab_channel=DeepMind
👉 @bigdata_1
Blog : https://deepmind.com/blog/article/generally-capable-agents-emerge-from-open-ended-play
Paper: https://deepmind.com/research/publications/open-ended-learning-leads-to-generally-capable-agents
DeepMind Research: https://github.com/deepmind/deepmind-research
Video: https://www.youtube.com/watch?v=lTmL7jwFfdw&ab_channel=DeepMind
👉 @bigdata_1
👍4
TimeSformer: A new architecture for video understanding
https://ai.facebook.com/blog/timesformer-a-new-architecture-for-video-understanding/
Paper: https://arxiv.org/abs/2102.05095
👉 @bigdata_1
https://ai.facebook.com/blog/timesformer-a-new-architecture-for-video-understanding/
Paper: https://arxiv.org/abs/2102.05095
👉 @bigdata_1
👍3
Droidlet: modular, heterogenous, multi-modal agents
Github: https://github.com/facebookresearch/droidlet
Paper: https://arxiv.org/abs/2101.10384
Article: https://yangx.top/machinelearning_ru/279
👉 @bigdata_1
Github: https://github.com/facebookresearch/droidlet
Paper: https://arxiv.org/abs/2101.10384
Article: https://yangx.top/machinelearning_ru/279
👉 @bigdata_1
👍2
ReDet: A Rotation-equivariant Detector for Aerial Object Detection
Github: https://github.com/csuhan/ReDet
Paper: https://arxiv.org/abs/2103.07733v1
👉 @bigdata_1
Github: https://github.com/csuhan/ReDet
Paper: https://arxiv.org/abs/2103.07733v1
👉 @bigdata_1
👍1
Pretrained Language Model
AutoTinyBERT: Automatic Hyper-parameter Optimization for Efficient Pre-trained Language Models
Github: https://github.com/huawei-noah/Pretrained-Language-Model
Paper: https://arxiv.org/abs/2107.13686v1
AutoTinyBERT: https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/AutoTinyBERT
👉 @bigdata_1
AutoTinyBERT: Automatic Hyper-parameter Optimization for Efficient Pre-trained Language Models
Github: https://github.com/huawei-noah/Pretrained-Language-Model
Paper: https://arxiv.org/abs/2107.13686v1
AutoTinyBERT: https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/AutoTinyBERT
👉 @bigdata_1
👍1
Contactless Sleep Sensing in Nest Hub
http://ai.googleblog.com/2021/03/contactless-sleep-sensing-in-nest-hub.html
👉 @bigdata_1
http://ai.googleblog.com/2021/03/contactless-sleep-sensing-in-nest-hub.html
👉 @bigdata_1
Googleblog
Contactless Sleep Sensing in Nest Hub
👍1
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators
Github: https://github.com/rinongal/StyleGAN-nada
Paper: https://arxiv.org/abs/2108.00946v1
Project: https://stylegan-nada.github.io/
Dataset: https://paperswithcode.com/dataset/lsun
👉 @bigdata_1
Github: https://github.com/rinongal/StyleGAN-nada
Paper: https://arxiv.org/abs/2108.00946v1
Project: https://stylegan-nada.github.io/
Dataset: https://paperswithcode.com/dataset/lsun
👉 @bigdata_1
👍2
Natural Language Processing Pipelines, Explained
https://www.kdnuggets.com/2021/03/natural-language-processing-pipelines-explained.html
👉 @bigdata_1
https://www.kdnuggets.com/2021/03/natural-language-processing-pipelines-explained.html
👉 @bigdata_1
👍1
Google представил нейросеть для детекции туберкулеза на радиограммах
https://pubs.rsna.org/doi/10.1148/radiol.212213
👉 @bigdata_1
https://pubs.rsna.org/doi/10.1148/radiol.212213
👉 @bigdata_1
👍1
🥑 DALL·E Mini
Generate images from a text prompt
Demo: https://huggingface.co/spaces/flax-community/dalle-mini
Github: https://github.com/borisdayma/dalle-mini
Paper: https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA
👉 @bigdata_1
Generate images from a text prompt
Demo: https://huggingface.co/spaces/flax-community/dalle-mini
Github: https://github.com/borisdayma/dalle-mini
Paper: https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA
👉 @bigdata_1
👍3
UPANets: Learning from the Universal Pixel Attention Networks Edit social preview
Github: https://github.com/hanktseng131415go/UPANets
Paper: https://arxiv.org/pdf/2103.08640.pdf
👉 @bigdata_1
Github: https://github.com/hanktseng131415go/UPANets
Paper: https://arxiv.org/pdf/2103.08640.pdf
👉 @bigdata_1
👍1
Toward Spatially Unbiased Generative Models
Github: https://github.com/jychoi118/toward_spatial_unbiased
Paper: https://arxiv.org/abs/2108.01285v1
👉 @bigdata_1
Github: https://github.com/jychoi118/toward_spatial_unbiased
Paper: https://arxiv.org/abs/2108.01285v1
👉 @bigdata_1
GitHub
GitHub - jychoi118/toward_spatial_unbiased: Toward Spatially Unbiased Generative Models (ICCV 2021)
Toward Spatially Unbiased Generative Models (ICCV 2021) - jychoi118/toward_spatial_unbiased
👍2
Training GANs with Stronger Augmentations via Contrastive Discriminator Edit social preview
Github: https://github.com/jh-jeong/ContraD
Paper: https://arxiv.org/abs/2103.09742
👉 @bigdata_1
Github: https://github.com/jh-jeong/ContraD
Paper: https://arxiv.org/abs/2103.09742
👉 @bigdata_1
👍1
▶️ Deepminds's Perceiver: General Perception with Iterative Attention
General architecture that works on many kinds of data
https://deepmind.com/blog/article/building-architectures-that-can-handle-the-worlds-data
Github: https://github.com/deepmind/deepmind-research/tree/master/perceiver
Colab: https://colab.research.google.com/github/deepmind/deepmind_research/blob/master/perceiver/colabs/masked_language_modelling.ipynb
Paper: https://arxiv.org/abs/2103.03206
👉 @bigdata_1
General architecture that works on many kinds of data
https://deepmind.com/blog/article/building-architectures-that-can-handle-the-worlds-data
Github: https://github.com/deepmind/deepmind-research/tree/master/perceiver
Colab: https://colab.research.google.com/github/deepmind/deepmind_research/blob/master/perceiver/colabs/masked_language_modelling.ipynb
Paper: https://arxiv.org/abs/2103.03206
👉 @bigdata_1
👍3
You Only Look One-level Feature
Github: https://github.com/megvii-model/YOLOF
Object detector without FPN: https://github.com/chensnathan/YOLOF
Paper: https://arxiv.org/abs/2103.09460v1
👉 @bigdata_1
Github: https://github.com/megvii-model/YOLOF
Object detector without FPN: https://github.com/chensnathan/YOLOF
Paper: https://arxiv.org/abs/2103.09460v1
👉 @bigdata_1
👍1
📸 Physics-based Noise Modeling for Extreme Low-light Photography
Github: https://github.com/Vandermode/ELD
Paper: https://arxiv.org/abs/2108.02158v1
Dataset: https://drive.google.com/drive/folders/1CT2Ny9W9ArdSQaHNxC5hGwav9lZHoqJa?usp=sharing
👉 @bigdata_1
Github: https://github.com/Vandermode/ELD
Paper: https://arxiv.org/abs/2108.02158v1
Dataset: https://drive.google.com/drive/folders/1CT2Ny9W9ArdSQaHNxC5hGwav9lZHoqJa?usp=sharing
👉 @bigdata_1
A Gentle Introduction to XGBoost Loss Functions
https://machinelearningmastery.com/xgboost-loss-functions/
👉 @bigdata_1
https://machinelearningmastery.com/xgboost-loss-functions/
👉 @bigdata_1
👍1
Improving Contrastive Learning by Visualizing Feature Transformation
Github: https://github.com/DTennant/CL-Visualizing-Feature-Transformation
Paper: https://arxiv.org/abs/2108.02982
👉 @bigdata_1
Github: https://github.com/DTennant/CL-Visualizing-Feature-Transformation
Paper: https://arxiv.org/abs/2108.02982
👉 @bigdata_1
👍1
Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking
Github: https://github.com/594422814/TransformerTrack
Paper: https://arxiv.org/abs/2103.11681v1
👉 @bigdata_1
Github: https://github.com/594422814/TransformerTrack
Paper: https://arxiv.org/abs/2103.11681v1
👉 @bigdata_1
👍1