В мире больших данных
244 subscribers
34 photos
5 files
54 links
Полезные заметки о системном анализе в мире больших данных. Если вам интересны Big Data, DWH, SQL и как навести порядок в данных — заглядывайте. Будет интересно и по делу.

Автор: @JuliaMur
加入频道
GROUPING SETS для упрощения агрегации

Мы группируем данные десятки раз в день: по датам, категориям, клиентам или нескольким полям сразу. Но что, если нужно получить несколько уровней агрегации в одном результате? Объединять три разных запроса через UNION ALL? Писать вложенные подзапросы? Такой сценарий превращает простую задачу в головоломку с кучей повторяющегося кода 🔄

Теперь представьте: один запрос возвращает и детализацию, и промежуточные итоги, и общую сумму. И всё это без дублирования логики и потери производительности. Это не магия — это GROUP BY GROUPING SETS. Спойлер: после него вы вряд ли захотите возвращаться к старому подходу.

Синтаксис:

SELECT column1, column2, AGG_FUNC(column3) AS aggregate_result
FROM table_name
GROUP BY GROUPING SETS
(
(column1),
(column2),
(column1, column2),
() -- итоговая строка для всех данных
);


Итак, у нас есть таблица с заказами, и нужно вывести витрину продаж: по дням, категориям, дням и категориям, а также общие продажи.


| order_id | order_dt | category | price |
|----------|------------|-------------|-------|
| 1 | 2025-02-01 | Книги | 100 |
| 2 | 2025-02-01 | Книги | 200 |
| 3 | 2025-02-01 | Электроника | 700 |
| 4 | 2025-02-02 | Книги | 150 |
| 5 | 2025-02-02 | Электроника | 250 |
| 6 | 2025-02-02 | Электроника | 550 |


Запрос:

SELECT
order_dt,
category,
SUM(price) AS total_sum
FROM orders
GROUP BY GROUPING SETS
(
(order_dt, category), -- Группировка по дням и категориям
(order_dt), -- по дням
(category), -- по категориям
() -- Итоговая строка
);


Результат:

| order_dt | category | total_sum |
|------------|-------------|-----------|
| 2024-01-01 | Книги | 300 |
| 2024-01-01 | Электроника | 700 |
| 2024-01-02 | Книги | 150 |
| 2024-01-02 | Электроника | 800 |
| 2024-01-01 | NULL | 1000 |
| 2024-01-02 | NULL | 950 |
| NULL | NULL | 1950 |
| NULL | Книги | 450 |
| NULL | Электроника | 1500 |


🔵Полные строки (order_dt и category заполнены) — детализированные данные.
🔵Строки с order_dt и NULL показывают суммы по каждому дню.
🔵Строки с category и NULL показывают суммы по каждой категории.
🔵Строка с двумя NULL — общая сумма.

Если нужно определить, какие строки являются результатом группировки, используйте функцию GROUPING(). Она возвращает 1 там, где значение агрегировано.

Пример:

SELECT
order_dt,
category,
SUM(price) AS total_sales,
GROUPING(order_dt) AS is_dt_agg,
GROUPING(category) AS is_cat_agg
FROM orders
GROUP BY GROUPING SETS
(
(order_dt), -- Группировка по дням
(category), -- Группировка по категориям
() -- Итоговая строка
);

| order_dt | category | total_sales | is_dt_agg | is_cat_agg |
|------------|------------|-------------|-----------|------------|
| 2024-01-01 | NULL | 1000 | 0 | 1 |
| 2024-01-02 | NULL | 950 | 0 | 1 |
| NULL | NULL | 1950 | 1 | 1 |
| NULL | Книги | 450 | 1 | 0 |
| NULL | Электроника| 1500 | 1 | 0 |


Почему GROUPING SETS лучше UNION ALL?
один запрос вместо нескольких
оптимизация выполнения — СУБД сканирует таблицу один раз и для каждой строки вычисляет все группировки параллельно
читабельность кода

поддерживаются не все диалекты SQL (но основные — PostgreSQL, Oracle, SQL Server, Snowflake, BigQuery — да)

GROUP BY GROUPING SETS полезен для отчетности и аналитических анализов, где нужны сводные данные разной детализации. Это инструмент работает:
🟢 удобно: меньше кода, меньше ошибок
🟢 быстро: один проход по данным
🟢 гибко: возможны любые комбинации группировок

#sql
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥5👍3
SQL под капотом: как выполняются запросы

Знаете ли вы, что происходит под капотом СУБД, когда вы выполняете SQL-запрос? База данных запускает целый процесс, шаг за шагом превращая код в набор данных. Каждая команда проходит проверку, оптимизацию, выполнение, обработку и вывод результата. Давайте посмотрим на каждый из этапов:

1. Query Parsing (разбор запроса)
Сначала сервер проверяет, правильно ли написан запрос. Проводит так называемый синтаксический анализ. Ошиблись в запятой или перепутали порядок ключевых слов? Получите ошибку.

После синтаксического анализа начинается семантический разбор: существуют ли таблицы и колонки, есть ли у вас права на запрос? Если все ок, база строит parse tree.

Parse Tree — это иерархическое представление запроса, где каждый узел — отдельная операция (например, фильтр, join, сортировка). Это облегчает работу оптимизатора и позволяет строить разные планы выполнения.

2. Query Optimization (оптимизация запроса)
На этом этапе в работу вступает умный планировщик. Он оценивает различные стратегии выполнения запроса, чтобы определить наиболее эффективную и менее ресурсоёмкую. Оптимизаторы сильно отличаются от СУБД к СУБД, но, к примеру, в Snowflake он, действительно, умный и даже плохо написанный запрос в большинстве случаев "переписывает" оптимально самостоятельно (это, конечно, не значит что стоит писать запросы как попало 👿).

Оптимизатор, в зависимости от СУБД может проверять:
Как соединять таблицы — Nested Loop, Hash Join, Merge Join?
Как фильтровать и сортировать данные?
Использовать индексы или нет?

Оптимизатор анализирует статистику таблиц: сколько строк, какие значения чаще встречаются, какие индексы есть. Он перебирает варианты и выбирает наилучший.

3. Query Execution (выполнение запроса)
После этого база данных начинает пошагово выполнять запрос, согласно выбранному плану.

Запросы могут выполняться через:
🔵 Table Scan — полный перебор строк в таблице (долго).
🔵 Index Seek — точечный поиск через индекс (быстро, но требует индекса).

4. Извлечение или изменение данных
Если наш запрос извлекает данные (SELECT - Data Query Language), база выбирает нужные строки из таблиц и формирует результат. Если же запрос изменяет данные (INSERT, MERGE, UPDATE или DELETE - Data Manipulation Language), информация в таблице обновляется, удаляется или дополняется.

5. Формирование результата
Когда SQL-движок собрал нужные строки, он финально формирует итоговый результат: сортирует, группирует, выполняет агрегатные вычисления. Однако часть агрегаций, особенно в запросах с GROUP BY, может выполняться еще на этапе извлечения данных, если движок решит, что это эффективнее. То есть это зависит от плана выполнения запроса и используемого метода обработки.

6. Результат
Когда всё готово, результат возвращается в клиентское приложение, которое уже отображает его пользователю.

Для SELECT-запросов, если данных много, они передаются частями, чтобы не перегружать память.
Некоторые базы поддерживают Lazy Execution — строки выгружаются только при необходимости.


Как видите, написанный запрос запускает целые механизмы внутри СУБД. Каждый этап играет свою роль: разбор проверяет синтаксис на ошибки, оптимизатор выбирает самый быстрый путь, выполнение шаг за шагом приводит к нужному результату, а передача данных гарантирует, что вы получите ответ в удобной форме, ничего не потеряв.

Не всегда имеет смысл знать, что происходит под капотом, но хотя бы верхнеуровневое понимание помогает нам самим работать эффективнее. Если что-то идет не так, вы будете знать, где искать проблему и как ее решить. Понимание происходящего — ключ к написанию быстрых и оптимизированных запросов.

#sql
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6👎21🤡1
Разбираемся с дублями

Если вашу выборку нужно почистить от дублей, вы можете сделать это очень просто:


SELECT *
FROM your_table
QUALIFY ROW_NUMBER() OVER(PARTITION BY column_id ORDER BY column_dt DESC) = 1;


В результате получим в выводе только уникальные строки (вместо *, конечно же, указываем корректный список полей).

QUALIFY + ROW_NUMBER() = никаких лишних подзапросов 🙃

Недостаток: пока что работает не во всех СУБД 🥲

Если СУБД не поддерживает оператор QUALIFY, можем чистить так:

WITH cte AS (
SELECT *,
ROW_NUMBER() OVER (PARTITION BY column_id ORDER BY column_dt DESC) AS rn
FROM your_table
)
SELECT *
FROM cte
WHERE rn = 1;


P.S. Про сам QUALIFY я уже писала здесь.

#sql
Please open Telegram to view this post
VIEW IN TELEGRAM
👍43🔥2
Иногда приходится разбирать чужие sql-запросы и периодически сталкиваюсь с различными ошибками. Сегодня хочу рассказать о трёх наиболее распространённых.

Некорректная работа с NULL
Я уже много раз писала, NULL — не просто пустота, это неизвестность. Поэтому нельзя сравнивать с NULL в лоб. Запрос вам ошибку не выдаст, но отработает некорректно.


-- неправильно:
SELECT * FROM users WHERE age = NULL;
SELECT * FROM users WHERE age != NULL;

-- правильно:
SELECT * FROM users WHERE age IS NULL;
SELECT * FROM users WHERE age IS NOT NULL;


Также при подсчёте количества строк COUNT(column_name) пропустит все NULL-значения. Поэтому если нужно посчитать прям вообще всё используйте COUNT(*).


-- считает количество заполненных номеров:
SELECT COUNT(phone) FROM users;

-- считает все строки, в том числе с NULL:
SELECT COUNT(*) FROM users;


Больше про #null я писала в постах с соответствующим тегом) на собесах часто про это спрашивают, но уделить внимание теме, конечно же, стоит не только поэтому.

Неправильное использование оператора BETWEEN
Ещё часто вижу, как забывают об особеннстях BETWEEN, забывая, что он включает и верхнюю, и нижнюю границы диапазона. Это может привести к дублированию данных или их пропуску при последовательной выборке.


-- пример кода с ошибкой:
-- выборка за 1 марта о полю типа дата-время
SELECT * FROM orders WHERE order_dttm BETWEEN '2024-03-01' AND '2024-03-02';
-- Выборка за 2 марта
SELECT * FROM orders WHERE order_dttm BETWEEN '2024-03-02' AND '2024-03-03';


В этом примере заказы, созданные ровно в полночь 2 марта (2024-03-02 00:00:00), будут включены в обе выборки! Лучше использовать явные полуинтервалы:

-- правильно:
-- выборка за 1 марта
SELECT * FROM orders WHERE order_dttm >= '2024-03-01' AND order_dttm < '2024-03-02';
-- выборка за 2 марта
SELECT * FROM orders WHERE order_dttm >= '2024-03-02' AND order_dttm < '2024-03-03';


Но если сильно хочется BETWEEN, то:

-- выборка за 1 марта
SELECT * FROM orders WHERE order_dttm BETWEEN '2024-03-01 00:00:00' AND '2024-03-01 23:59:59';
-- выборка за 2 марта
SELECT * FROM orders WHERE order_dttm BETWEEN '2024-03-01 00:00:00.000' AND '2024-03-01 23:59:59.999';


Да, про миллисекунды забывать не нужно, а то можно что-то потерять. И всё-таки проще использовать полуинтервалы)

Ошибки в логических операторах
Ещё часто забывают про приоритеты при использовании AND и OR в одном условии. В SQL сначала выполняются все AND, а затем уже OR.
Например, нужно найти все транзакции на сумму больше 100.000, которые имеют статус "completed" и при этом либо от премиум-пользователя, либо оплачены кредитной картой.

-- неправильно:
SELECT * FROM transactions
WHERE amount > 100000
AND status = 'completed'
AND user_type = 'premium' OR payment_method = 'credit_card'


По правилам SQL операторы AND приоритетнее. Поэтому запрос интерпретируется так:

SELECT * FROM transactions
WHERE (status = 'completed' AND amount > 100000 AND user_type = 'premium')
OR (payment_method = 'credit_card')


То есть мы получим все завершённые транзакции премиум-пользователей с суммой больше 100000, плюс абсолютно все транзакции с кредитных карт (даже незавершённые и с маленькими суммами).

Так мы получим именно то, что хотели:

-- правильно:
SELECT * FROM transactions
WHERE status = 'completed'
AND amount > 100000
AND (user_type = 'premium' OR payment_method = 'credit_card')


В целом, проще лишний раз указать скобки, чем запутаться и получить ошибочный результат.

Кому-то кажется очевидным, но такие вещи, действительно, встречаются. А с какими ошибками в sql вы часто сталкиваетесь?

#sql
👍6🔥5
Занималась тут оптимизацией чужого запроса. И вот вроде бы знаешь базу и хочешь её применить, но оптимизатор всегда оказывается хитрее 🙂

Среди прочего, пыталась применить одно из главных правил оптимизации — predicate pushdown. Это когда мы поднимаем условия фильтрации как можно выше, чтобы заранее уменьшить объем данных. Так вот, вынесла в cte фильтрацию одной таблички (~2GB), а в другом cte уже шла работа с отфильтрованными данными — джойны и тп. Смотрю в план запроса и вижу фигу, что снежок (snowflake) всё равно сначала сканирует таблицу целиком, затем джойнит, и только после этого фильтрует 😵 причём аналогичный сценарий на другой, но бОльшей таблице (~в 8GB) отрабатывает как надо 🥲 Видимо, размер данных или внутренняя статистика влияют на решения cost-based оптимизатора.

Никаких инсайтов в этой заметке вам не дам, но в очередной раз убеждаюсь: важно уметь читать (и понимать) планы запросов и анализировать query profile. Не всегда логичные на первый взгляд шаги оптимизации работают как ожидается. И не только от СУБД к СУБД поведение может разительно отличаться, но и даже в рамках таблиц в одном хранилище. Экспериментируйте и тестируйте на реальных данных 🤖

P.S. Тем, кто хочет использовать для анализа планов гпт, всё же советую сначала самостоятельно научиться их читать, т.к. LLM всё ещё склонны к галлюцинациям. Как говорится: "на ИИ надейся, да сам не плошай".

#sql #snowflake
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥12