В мире больших данных
244 subscribers
34 photos
5 files
54 links
Полезные заметки о системном анализе в мире больших данных. Если вам интересны Big Data, DWH, SQL и как навести порядок в данных — заглядывайте. Будет интересно и по делу.

Автор: @JuliaMur
加入频道
Организация мониторинга и алертинга в DWH-системах

Мониторинг и алертинг — это не просто какие-то модные слова из мира IT. Это основа, на которой держится работа с данными. Давайте разберемся, как это устроено в современных хранилищах.

В DWH хранятся важные данные компании: отчеты, аналитика, истории взаимодействий с клиентами. Некорректная загрузка и обработка этих данных может обернуться большими проблемами. Мониторинг помогает вовремя выявлять аномалии в данных и процессах, а оповещения — вовремя на них реагировать.

Основные задачи мониторинга
Первая — контроль выполнения ETL/ELT процессов. Например, если скрипты, которые должны обновлять данные ежедневно, вдруг падают или выполняются слишком долго, мониторинг должен это заметить и сообщить об ошибке дежурных инженеров, чтобы они могли оперативно вмешаться.

Простой пример: у вас есть ежедневный процесс обновления данных об отгрузках со склада, и обычно он выполняется за 15 минут. Если мониторинг фиксирует, что процесс вдруг начал занимать час, он оповещает, что что-то пошло не так. Возможно, сломалась загрузка из источника или увеличился объем данных (тоже не плохо обратить на это внимание).

Еще одна задача — контроль качества данных. Иногда сами данные могут приходить с ошибками. Представьте, что ваш ETL процесс получил пустые строки об отгрузках вместо обычного объема данных. Хорошо настроенный мониторинг заметит это и оповестит команду.

Что конкретно стоит мониторить?
1. Процессы загрузки данных: время выполнения, наличие ошибок, объемы данных.
2. Качество данных: проверки на пустые значения, аномалии, отклонения от ожидаемых значений.
3. Работа сервера: утилизация CPU, память, доступное место на диске. Особенно важно в облачных решениях, где рост нагрузки приводит к дополнительным затратам.


Оповещения должны быть точными и своевременными. Если система засыпает вас уведомлениями по каждому пустяку, вы быстро перестанете на них реагировать. В итоге важные сообщения могут пройти мимо.

Ещё один пример: если ETL процесс падает три раза подряд — это явно повод для тревоги. Алертинг должен отправить сообщение дежурным инженерам по оперативным каналам (но не засыпать этот канал оповещениями нон-стоп). Для этого удобно использовать мессенджеры вроде Slack, хуже — email уведомления.

Инструменты для мониторинга и алертинга
🟠 Prometheus + Grafana: отличный вариант для отслеживания метрик и визуализации данных. Prometheus собирает метрики, а Grafana показывает их в удобных дашбордах.
🟠 dbt Cloud: инструмент для разработки и тестирования ELT процессов, который также имеет встроенные возможности для мониторинга.
🟠 Snowflake Native Alerts: позволяет создавать алерты на основе запросов. Например, если количество записей в таблице падает ниже ожидаемого уровня, система автоматически уведомит об этом.
🟠 самописные решения 🐱

С чего начать?
Например, с базовых метрик для ETL процессов, а затем добавить проверки на качество данных. Используйте оповещения с пороговыми значениями. Например, алерт сработает, если время выполнения процесса превышает обычное более чем на 10%.

Не забывайте оптимизировать количество уведомлений. Никто не хочет получать 100 уведомлений в минуту. Поэтому важно тщательно подбирать критерии для алертов, чтобы они всегда были уместны и вызвали информационную слепоту.

Используйте (или проектируйте) подходящие инструменты для мониторинга и системы оповещений, и не перегружайте свою команду лишними уведомлениями. Это сделает ваше хранилище надежным и эффективным. В конце концов, зачем нужным данные, если мы не можем положиться на их качество?

#dwh
Please open Telegram to view this post
VIEW IN TELEGRAM
1
Материализованные представления: ускоряем аналитику

Материализованные представления (Materialized Views, MV, матвью) — способ ускорить выполнение аналитических запросов за счет предварительного вычисления и сохранения данных.


Чтобы понять матвью, давайте вернёмся на шаг назад и вспомним, что такое вью (view, V, представление). Представление — это виртуальные таблицы, которые хранят текст SQL-запроса и запускаются на лету. Они не сохраняют сами данные (в некоторых бд могут кешироваться в рамках сеанса до изменения источников).

Основное отличие MV от V как раз в том, что оно физически хранит результаты вычислений и позволяет использовать их повторно, вместо того чтобы пересчитывать данные каждый раз.

Пример: есть таблица с данными о продажах, которые обновляются раз в сутки. Аналитики несколько раз в день строят отчёты с расчётом суммарного дохода по регионам и категориям товаров. Создание MV позволяет агрегировать данные раз в сутки сразу после обновления источников. Это ускоряет построение отчетов и снижает нагрузку на базу данных.

Рассмотрим пример создания MV для Snowflake:

CREATE MATERIALIZED VIEW sales_summary_mv AS
SELECT
region,
category,
SUM(revenue) AS total_revenue,
COUNT(*) AS transaction_count
FROM sales
GROUP BY region, category;


Как происходит синхронизация данных?
Чаще всего MV автоматически обновляются при изменении исходных данных. Однако частота и способ обновления зависят от СУБД:
— Snowflake: обновляются инкрементально, снижая нагрузку на хранилище.
— PostgreSQL: обновление требует явного выполнения команды REFRESH MATERIALIZED VIEW, что добавляет ручной работы.
— Oracle: поддерживаются как полные, так и инкрементальные обновления в зависимости от настроек.
— Microsoft SQL Server: MV называются индексированными представлениями и обновляются автоматически, но с ограничениями на типы запросов.

Когда использовать MV
🟢 один и тот же сложный запрос выполняется многократно на большом объёме данных;
🟢 исходные данные обновляются редко, а аналитика выполняется часто;
🟢 нужен быстрый доступ к данным с минимальной задержкой;
🟢 есть достаточно места для хранения данных.

Когда не стоит использовать MV
🟣 запросы редкие или исследовательские (ad hoc) — тогда затраты перевешивают выгоду;
🟣 ограничено место для хранения (ведь данные сохраняются физически);
🟣 данные обновляются слишком часто — материализованные представления необходимо часто обновлять, что может привести к дополнительным накладным расходам (актуально не для всех систем);
🟣 запросы содержат конструкции, не поддерживаемые MV (зависит от БД).

MV — не универсальное решение, но тем не менее есть ситуации в которых их использование помогает ускорить аналитические запросы, экономя ресурсы. Они оптимальны для сценариев, где данные обновляются реже, чем анализируются. Важно помнить о балансе: применять MV стоит только там, где выгода от ускорения превышает затраты на хранение данных и процесс вычисления.

#dwh
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍1🔥1