Загрузка данных в хранилище: полная, инкрементальная и частичная перезагрузка
Что самое главное в DWH? Конечно же, данные, которые как-то должны попасть в хранилище. Чаще мы используем современные методы загрузки, но на ранних этапах или из-за тех. ограничений, или при исследованиях, мы всё также прибегаем к классическим методам.
Есть три основных подхода: полная загрузка, инкрементальная и частичная перезагрузка. Системным аналитикам важно понимать когда какой подход лучше использовать.
При полной загрузке мы каждый раз заново забираем все данные из источника, полностью заменяя существующие данные в хранилище. Почему "полностью" курсивом? Иногда нам нужно отслеживать удалённые строки, тогда мы не просто транкейтим, а размечаем отсутствующие строки флагом DELETED.
Полная загрузка — самый простой метод со своими особенностями:
➕ простота реализации
➕ 100% актуальность данных
➖ высокая нагрузка при больших объемах данных
➖ время выполнения
➖ неэффективное использование ресурсов при небольших изменениях.
Этот метод идеален для небольших таблиц или когда нужна полная уверенность в актуальности данных. Также он хорошо подходит для справочников и других статичных данных, которые обновляются очень редко (обратите внимание, что редко определяется требованиями конкретного бизнеса).
При инкрементальном методе мы добавляем только новые или измененные данные с момента последней загрузки. Это существенно экономит время и ресурсы. Особенности:
➕ быстрее
➕ меньше нагрузка на источник и хранилище
➕ эффективное использование ресурсов
➖ сложность реализации и отслеживания изменений
➖ риск пропустить изменения
➖ нужно хранить метаданные о загрузках.
Для больших таблиц с частыми апдейтами — то, что надо. Важно❗️ если нужно отслеживать изменения, у таблиц должно быть поле, содержащее дату и время обновления строки. Убедитесь, что вы можете доверять ему. Комментарии к полям могут врать! В моей практике были случаи, когда дата содержала инфу об изменении только нескольких полей из таблицы, что не было нигде явно указано 🥲 (да, иногда нужно покапаться в коде источника)
Также важно помнить, что если в таблице удалили какую-то строку, то вы никогда об этом не узнаете, ведь вы забираете изменения только по существующим строкам.
Если мы говорим только про забор новых изменений, нам нужно инкрементное поле или поле с датой добавления строки (желательно заполняемое getdate), по которому мы будем забирать только новые строки. Метод отлично подходит для логов.
Частичная перезагрузка — гибрид предыдущих способов. Здесь мы перезагружаем только часть данных, обычно за какой-то конкретный период.
➕ баланс актуальности и эффективности
➕ обновление за определенный период без полной перезагрузки
➕ удобно для данных с "окном актуальности"
➖ сложно определить оптимальный период
➖ риск дублей при неправильной реализации
➖ нужна дополнительная логика для определения границ загрузки
Частичную перезагрузку часто применяют для данных с "окном актуальности", например, когда нужно обновить данные за последний месяц или квартал. Когда точно известно, что "более старые" данные неизменны. Здесь та же история, про которую я писала выше, у вас должно быть поле с датой, которому вы точно можете доверять.
Подытожу, выбор метода загрузки зависит от многих факторов: объема данных, частоты обновлений, требований к актуальности и доступных ресурсов. Но даже если на первый взгляд кажется, что выбрать нужный метод просто, в реальной жизни часто приходится идти на компромиссы или комбинировать подходы. Например, объект с миллионами строк без даты обновления можно днем грузить инкрементально, а раз в неделю обновлять целиком. Так себе история и, конечно, лучше использовать иные методы загрузки, но ситуации бывают разными. Будьте к ним готовы.
Благодаря тому, что источники не идеальны, работа системного аналитика всегда где-то на грани творчества и здравого смысла😇
#dwh
Что самое главное в DWH? Конечно же, данные, которые как-то должны попасть в хранилище. Чаще мы используем современные методы загрузки, но на ранних этапах или из-за тех. ограничений, или при исследованиях, мы всё также прибегаем к классическим методам.
Есть три основных подхода: полная загрузка, инкрементальная и частичная перезагрузка. Системным аналитикам важно понимать когда какой подход лучше использовать.
При полной загрузке мы каждый раз заново забираем все данные из источника, полностью заменяя существующие данные в хранилище. Почему "полностью" курсивом? Иногда нам нужно отслеживать удалённые строки, тогда мы не просто транкейтим, а размечаем отсутствующие строки флагом DELETED.
Полная загрузка — самый простой метод со своими особенностями:
Этот метод идеален для небольших таблиц или когда нужна полная уверенность в актуальности данных. Также он хорошо подходит для справочников и других статичных данных, которые обновляются очень редко (обратите внимание, что редко определяется требованиями конкретного бизнеса).
При инкрементальном методе мы добавляем только новые или измененные данные с момента последней загрузки. Это существенно экономит время и ресурсы. Особенности:
Для больших таблиц с частыми апдейтами — то, что надо. Важно
Также важно помнить, что если в таблице удалили какую-то строку, то вы никогда об этом не узнаете, ведь вы забираете изменения только по существующим строкам.
Если мы говорим только про забор новых изменений, нам нужно инкрементное поле или поле с датой добавления строки (желательно заполняемое getdate), по которому мы будем забирать только новые строки. Метод отлично подходит для логов.
Частичная перезагрузка — гибрид предыдущих способов. Здесь мы перезагружаем только часть данных, обычно за какой-то конкретный период.
Частичную перезагрузку часто применяют для данных с "окном актуальности", например, когда нужно обновить данные за последний месяц или квартал. Когда точно известно, что "более старые" данные неизменны. Здесь та же история, про которую я писала выше, у вас должно быть поле с датой, которому вы точно можете доверять.
Подытожу, выбор метода загрузки зависит от многих факторов: объема данных, частоты обновлений, требований к актуальности и доступных ресурсов. Но даже если на первый взгляд кажется, что выбрать нужный метод просто, в реальной жизни часто приходится идти на компромиссы или комбинировать подходы. Например, объект с миллионами строк без даты обновления можно днем грузить инкрементально, а раз в неделю обновлять целиком. Так себе история и, конечно, лучше использовать иные методы загрузки, но ситуации бывают разными. Будьте к ним готовы.
Благодаря тому, что источники не идеальны, работа системного аналитика всегда где-то на грани творчества и здравого смысла
#dwh
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍3
Организация мониторинга и алертинга в DWH-системах
Мониторинг и алертинг — это не просто какие-то модные слова из мира IT. Это основа, на которой держится работа с данными. Давайте разберемся, как это устроено в современных хранилищах.
В DWH хранятся важные данные компании: отчеты, аналитика, истории взаимодействий с клиентами. Некорректная загрузка и обработка этих данных может обернуться большими проблемами. Мониторинг помогает вовремя выявлять аномалии в данных и процессах, а оповещения — вовремя на них реагировать.
Основные задачи мониторинга
Первая — контроль выполнения ETL/ELT процессов. Например, если скрипты, которые должны обновлять данные ежедневно, вдруг падают или выполняются слишком долго, мониторинг должен это заметить и сообщить об ошибке дежурных инженеров, чтобы они могли оперативно вмешаться.
Простой пример: у вас есть ежедневный процесс обновления данных об отгрузках со склада, и обычно он выполняется за 15 минут. Если мониторинг фиксирует, что процесс вдруг начал занимать час, он оповещает, что что-то пошло не так. Возможно, сломалась загрузка из источника или увеличился объем данных (тоже не плохо обратить на это внимание).
Еще одна задача — контроль качества данных. Иногда сами данные могут приходить с ошибками. Представьте, что ваш ETL процесс получил пустые строки об отгрузках вместо обычного объема данных. Хорошо настроенный мониторинг заметит это и оповестит команду.
Что конкретно стоит мониторить?
1. Процессы загрузки данных: время выполнения, наличие ошибок, объемы данных.
2. Качество данных: проверки на пустые значения, аномалии, отклонения от ожидаемых значений.
3. Работа сервера: утилизация CPU, память, доступное место на диске. Особенно важно в облачных решениях, где рост нагрузки приводит к дополнительным затратам.
Оповещения должны быть точными и своевременными. Если система засыпает вас уведомлениями по каждому пустяку, вы быстро перестанете на них реагировать. В итоге важные сообщения могут пройти мимо.
Ещё один пример: если ETL процесс падает три раза подряд — это явно повод для тревоги. Алертинг должен отправить сообщение дежурным инженерам по оперативным каналам (но не засыпать этот канал оповещениями нон-стоп). Для этого удобно использовать мессенджеры вроде Slack, хуже — email уведомления.
Инструменты для мониторинга и алертинга
🟠 Prometheus + Grafana: отличный вариант для отслеживания метрик и визуализации данных. Prometheus собирает метрики, а Grafana показывает их в удобных дашбордах.
🟠 dbt Cloud: инструмент для разработки и тестирования ELT процессов, который также имеет встроенные возможности для мониторинга.
🟠 Snowflake Native Alerts: позволяет создавать алерты на основе запросов. Например, если количество записей в таблице падает ниже ожидаемого уровня, система автоматически уведомит об этом.
🟠 самописные решения 🐱
С чего начать?
Например, с базовых метрик для ETL процессов, а затем добавить проверки на качество данных. Используйте оповещения с пороговыми значениями. Например, алерт сработает, если время выполнения процесса превышает обычное более чем на 10%.
Не забывайте оптимизировать количество уведомлений. Никто не хочет получать 100 уведомлений в минуту. Поэтому важно тщательно подбирать критерии для алертов, чтобы они всегда были уместны и вызвали информационную слепоту.
Используйте (или проектируйте) подходящие инструменты для мониторинга и системы оповещений, и не перегружайте свою команду лишними уведомлениями. Это сделает ваше хранилище надежным и эффективным. В конце концов, зачем нужным данные, если мы не можем положиться на их качество?
#dwh
Мониторинг и алертинг — это не просто какие-то модные слова из мира IT. Это основа, на которой держится работа с данными. Давайте разберемся, как это устроено в современных хранилищах.
В DWH хранятся важные данные компании: отчеты, аналитика, истории взаимодействий с клиентами. Некорректная загрузка и обработка этих данных может обернуться большими проблемами. Мониторинг помогает вовремя выявлять аномалии в данных и процессах, а оповещения — вовремя на них реагировать.
Основные задачи мониторинга
Первая — контроль выполнения ETL/ELT процессов. Например, если скрипты, которые должны обновлять данные ежедневно, вдруг падают или выполняются слишком долго, мониторинг должен это заметить и сообщить об ошибке дежурных инженеров, чтобы они могли оперативно вмешаться.
Простой пример: у вас есть ежедневный процесс обновления данных об отгрузках со склада, и обычно он выполняется за 15 минут. Если мониторинг фиксирует, что процесс вдруг начал занимать час, он оповещает, что что-то пошло не так. Возможно, сломалась загрузка из источника или увеличился объем данных (тоже не плохо обратить на это внимание).
Еще одна задача — контроль качества данных. Иногда сами данные могут приходить с ошибками. Представьте, что ваш ETL процесс получил пустые строки об отгрузках вместо обычного объема данных. Хорошо настроенный мониторинг заметит это и оповестит команду.
Что конкретно стоит мониторить?
1. Процессы загрузки данных: время выполнения, наличие ошибок, объемы данных.
2. Качество данных: проверки на пустые значения, аномалии, отклонения от ожидаемых значений.
3. Работа сервера: утилизация CPU, память, доступное место на диске. Особенно важно в облачных решениях, где рост нагрузки приводит к дополнительным затратам.
Оповещения должны быть точными и своевременными. Если система засыпает вас уведомлениями по каждому пустяку, вы быстро перестанете на них реагировать. В итоге важные сообщения могут пройти мимо.
Ещё один пример: если ETL процесс падает три раза подряд — это явно повод для тревоги. Алертинг должен отправить сообщение дежурным инженерам по оперативным каналам (но не засыпать этот канал оповещениями нон-стоп). Для этого удобно использовать мессенджеры вроде Slack, хуже — email уведомления.
Инструменты для мониторинга и алертинга
С чего начать?
Например, с базовых метрик для ETL процессов, а затем добавить проверки на качество данных. Используйте оповещения с пороговыми значениями. Например, алерт сработает, если время выполнения процесса превышает обычное более чем на 10%.
Не забывайте оптимизировать количество уведомлений. Никто не хочет получать 100 уведомлений в минуту. Поэтому важно тщательно подбирать критерии для алертов, чтобы они всегда были уместны и вызвали информационную слепоту.
Используйте (или проектируйте) подходящие инструменты для мониторинга и системы оповещений, и не перегружайте свою команду лишними уведомлениями. Это сделает ваше хранилище надежным и эффективным. В конце концов, зачем нужным данные, если мы не можем положиться на их качество?
#dwh
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
Материализованные представления: ускоряем аналитику
Чтобы понять матвью, давайте вернёмся на шаг назад и вспомним, что такое вью (view, V, представление). Представление — это виртуальные таблицы, которые хранят текст SQL-запроса и запускаются на лету. Они не сохраняют сами данные (в некоторых бд могут кешироваться в рамках сеанса до изменения источников).
Основное отличие MV от V как раз в том, что оно физически хранит результаты вычислений и позволяет использовать их повторно, вместо того чтобы пересчитывать данные каждый раз.
Пример: есть таблица с данными о продажах, которые обновляются раз в сутки. Аналитики несколько раз в день строят отчёты с расчётом суммарного дохода по регионам и категориям товаров. Создание MV позволяет агрегировать данные раз в сутки сразу после обновления источников. Это ускоряет построение отчетов и снижает нагрузку на базу данных.
Рассмотрим пример создания MV для Snowflake:
Как происходит синхронизация данных?
Чаще всего MV автоматически обновляются при изменении исходных данных. Однако частота и способ обновления зависят от СУБД:
— Snowflake: обновляются инкрементально, снижая нагрузку на хранилище.
— PostgreSQL: обновление требует явного выполнения команды REFRESH MATERIALIZED VIEW, что добавляет ручной работы.
— Oracle: поддерживаются как полные, так и инкрементальные обновления в зависимости от настроек.
— Microsoft SQL Server: MV называются индексированными представлениями и обновляются автоматически, но с ограничениями на типы запросов.
Когда использовать MV
🟢 один и тот же сложный запрос выполняется многократно на большом объёме данных;
🟢 исходные данные обновляются редко, а аналитика выполняется часто;
🟢 нужен быстрый доступ к данным с минимальной задержкой;
🟢 есть достаточно места для хранения данных.
Когда не стоит использовать MV
🟣 запросы редкие или исследовательские (ad hoc) — тогда затраты перевешивают выгоду;
🟣 ограничено место для хранения (ведь данные сохраняются физически);
🟣 данные обновляются слишком часто — материализованные представления необходимо часто обновлять, что может привести к дополнительным накладным расходам (актуально не для всех систем);
🟣 запросы содержат конструкции, не поддерживаемые MV (зависит от БД).
MV — не универсальное решение, но тем не менее есть ситуации в которых их использование помогает ускорить аналитические запросы, экономя ресурсы. Они оптимальны для сценариев, где данные обновляются реже, чем анализируются. Важно помнить о балансе: применять MV стоит только там, где выгода от ускорения превышает затраты на хранение данных и процесс вычисления.
#dwh
Материализованные представления (Materialized Views, MV, матвью) — способ ускорить выполнение аналитических запросов за счет предварительного вычисления и сохранения данных.
Чтобы понять матвью, давайте вернёмся на шаг назад и вспомним, что такое вью (view, V, представление). Представление — это виртуальные таблицы, которые хранят текст SQL-запроса и запускаются на лету. Они не сохраняют сами данные (в некоторых бд могут кешироваться в рамках сеанса до изменения источников).
Основное отличие MV от V как раз в том, что оно физически хранит результаты вычислений и позволяет использовать их повторно, вместо того чтобы пересчитывать данные каждый раз.
Пример: есть таблица с данными о продажах, которые обновляются раз в сутки. Аналитики несколько раз в день строят отчёты с расчётом суммарного дохода по регионам и категориям товаров. Создание MV позволяет агрегировать данные раз в сутки сразу после обновления источников. Это ускоряет построение отчетов и снижает нагрузку на базу данных.
Рассмотрим пример создания MV для Snowflake:
CREATE MATERIALIZED VIEW sales_summary_mv AS
SELECT
region,
category,
SUM(revenue) AS total_revenue,
COUNT(*) AS transaction_count
FROM sales
GROUP BY region, category;
Как происходит синхронизация данных?
Чаще всего MV автоматически обновляются при изменении исходных данных. Однако частота и способ обновления зависят от СУБД:
— Snowflake: обновляются инкрементально, снижая нагрузку на хранилище.
— PostgreSQL: обновление требует явного выполнения команды REFRESH MATERIALIZED VIEW, что добавляет ручной работы.
— Oracle: поддерживаются как полные, так и инкрементальные обновления в зависимости от настроек.
— Microsoft SQL Server: MV называются индексированными представлениями и обновляются автоматически, но с ограничениями на типы запросов.
Когда использовать MV
Когда не стоит использовать MV
MV — не универсальное решение, но тем не менее есть ситуации в которых их использование помогает ускорить аналитические запросы, экономя ресурсы. Они оптимальны для сценариев, где данные обновляются реже, чем анализируются. Важно помнить о балансе: применять MV стоит только там, где выгода от ускорения превышает затраты на хранение данных и процесс вычисления.
#dwh
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍1🔥1