В рубрике интересных наборов данных, сайт День сурка (Groundhog-Day.com) [1] где собрана база из 74 животных предсказателей длинной зимы или ранней весны, включая 43 сурка.
Сделано явно с большой любовью к животным и к данным, потому что у сайта есть открытое API [2] с информацией о всех животных, их местонахождении и предсказаниях.
Ссылки:
[1] https://groundhog-day.com
[2] https://groundhog-day.com/api
#opendata #api
Сделано явно с большой любовью к животным и к данным, потому что у сайта есть открытое API [2] с информацией о всех животных, их местонахождении и предсказаниях.
Ссылки:
[1] https://groundhog-day.com
[2] https://groundhog-day.com/api
#opendata #api
Подборка регулярного чтения про данные, технологии и не только:
- A Eulogy for Dark Sky, a Data Visualization Masterpiece [1] о визуализации данных в погодном приложении The Dark Sky для iOS и там же про наглядные решения контекстуализации данных. Я бы добавил этот термин в словарь "констектуализация данных" - это когда данные у Вас есть, но Вы подаёте их в том виде в каком они наиболее информативны и наглядны именно в том контексте/приложении/среде в которой их смотрят. А это приложение погоды отличный пример
- The Beginner's Guide to Databases [2] для новичков желающих разобраться в базах данных отличное руководство, оно не покрывает очень много чего, но одновременно даёт все нужные вводные для старта работы
- Meet Alpaca: Stanford University’s Instruction-Following Language Model that Matches GPT-3.5 Performance [3] новый интересный продукт как альтернатива GPT-3.5 под названием Альпака, главные отличия в открытости и меньших требованиях к железу. Открытый код главное преимущество [4]
- Finding Undocumented APIs [5] автор пишет про мою любимую тему, обнаружение недокументированных API. Я несколько выступлений и лекций проводил за эти годы про поиск и нахождение недокументированных API и ещё немало трюков могу рассказать о том как API находить, помимо перехвата запросов браузера к серверу. Так вот два самых очевидных способа часто срабатывающих:
* 1) Поискать API поиском Гугла на сайте явным образом вроде "REST API site:roskachestvo.gov.ru" и результат может удивить
* 2) Выяснить на каком программном продукте работает сайт и проверить не сохранилось ли в нём API идущее по умолчанию, у многих продуктов такое есть. Пример: Архив оцифрованных материалов Национальной электронной детской библиотеки РФ arch.rgdb.ru работает на движке DSpace, а у DSpace по умолчанию API доступно по ссылке /rest, проверяем, ага, вот и оно https://arch.rgdb.ru/rest/
Я могу не то что презентацию, а целый курс прочитать только по этой теме. Тем не менее ту статью рекомендую, часто информацию о API приходится выковыривать из сессий браузера.
- Data wrangling essentials: comparisons in JavaScript, Python, SQL, R, and Excel [6] сравнение функций преобразований данных в Excel, Python, R, SQL и Javascript. Полезно для тех кто вынужден пользоваться 2-3 языками/синтаксисами. Python там, правда, это не совсем Python, а конкретно Pandas, но текст от этого ценности не теряет.
Ссылки:
[1] https://nightingaledvs.com/dark-sky-weather-data-viz/
[2] https://technically.substack.com/p/the-beginners-guide-to-databases
[3] https://pub.towardsai.net/meet-alpaca-stanford-universitys-instruction-following-language-model-that-matches-gpt-3-5-490a38114a7e
[4] https://github.com/tatsu-lab/stanford_alpaca
[5] https://inspectelement.org/apis.html
[6] https://observablehq.com/@observablehq/data-wrangling-translations
#opensource #readings #api #data #guides
- A Eulogy for Dark Sky, a Data Visualization Masterpiece [1] о визуализации данных в погодном приложении The Dark Sky для iOS и там же про наглядные решения контекстуализации данных. Я бы добавил этот термин в словарь "констектуализация данных" - это когда данные у Вас есть, но Вы подаёте их в том виде в каком они наиболее информативны и наглядны именно в том контексте/приложении/среде в которой их смотрят. А это приложение погоды отличный пример
- The Beginner's Guide to Databases [2] для новичков желающих разобраться в базах данных отличное руководство, оно не покрывает очень много чего, но одновременно даёт все нужные вводные для старта работы
- Meet Alpaca: Stanford University’s Instruction-Following Language Model that Matches GPT-3.5 Performance [3] новый интересный продукт как альтернатива GPT-3.5 под названием Альпака, главные отличия в открытости и меньших требованиях к железу. Открытый код главное преимущество [4]
- Finding Undocumented APIs [5] автор пишет про мою любимую тему, обнаружение недокументированных API. Я несколько выступлений и лекций проводил за эти годы про поиск и нахождение недокументированных API и ещё немало трюков могу рассказать о том как API находить, помимо перехвата запросов браузера к серверу. Так вот два самых очевидных способа часто срабатывающих:
* 1) Поискать API поиском Гугла на сайте явным образом вроде "REST API site:roskachestvo.gov.ru" и результат может удивить
* 2) Выяснить на каком программном продукте работает сайт и проверить не сохранилось ли в нём API идущее по умолчанию, у многих продуктов такое есть. Пример: Архив оцифрованных материалов Национальной электронной детской библиотеки РФ arch.rgdb.ru работает на движке DSpace, а у DSpace по умолчанию API доступно по ссылке /rest, проверяем, ага, вот и оно https://arch.rgdb.ru/rest/
Я могу не то что презентацию, а целый курс прочитать только по этой теме. Тем не менее ту статью рекомендую, часто информацию о API приходится выковыривать из сессий браузера.
- Data wrangling essentials: comparisons in JavaScript, Python, SQL, R, and Excel [6] сравнение функций преобразований данных в Excel, Python, R, SQL и Javascript. Полезно для тех кто вынужден пользоваться 2-3 языками/синтаксисами. Python там, правда, это не совсем Python, а конкретно Pandas, но текст от этого ценности не теряет.
Ссылки:
[1] https://nightingaledvs.com/dark-sky-weather-data-viz/
[2] https://technically.substack.com/p/the-beginners-guide-to-databases
[3] https://pub.towardsai.net/meet-alpaca-stanford-universitys-instruction-following-language-model-that-matches-gpt-3-5-490a38114a7e
[4] https://github.com/tatsu-lab/stanford_alpaca
[5] https://inspectelement.org/apis.html
[6] https://observablehq.com/@observablehq/data-wrangling-translations
#opensource #readings #api #data #guides
Nightingale
A Eulogy for Dark Sky, a Data Visualization Masterpiece
A deep look at how the Dark Sky weather app used simple but highly effective charts to report and contextualize the weather.