О секретах популярности языка Python в сентябрьском исследовании от StackOverflow [1]. В качестве спойлера - главная причина в pandas [2], проекте поддерживаемом NUMFocus [3], организации поддерживающей качественные open source проекты полезные для науки.
В исследовании Stack Overflow это хорошо заметно, значительный прирост пользователей у Python происходит из аудитории "Academics" - это преподаватели, студенты и исследователи из университетской среды. Что и говорить, pandas - это отличный продукт по работе данными и полезный для любых задач анализа и обработки данных.
Ссылки:
[1] https://stackoverflow.blog/2017/09/14/python-growing-quickly/
[2] http://pandas.pydata.org/
[3] https://www.numfocus.org/open-source-projects/
#opendata #python #data
В исследовании Stack Overflow это хорошо заметно, значительный прирост пользователей у Python происходит из аудитории "Academics" - это преподаватели, студенты и исследователи из университетской среды. Что и говорить, pandas - это отличный продукт по работе данными и полезный для любых задач анализа и обработки данных.
Ссылки:
[1] https://stackoverflow.blog/2017/09/14/python-growing-quickly/
[2] http://pandas.pydata.org/
[3] https://www.numfocus.org/open-source-projects/
#opendata #python #data
Stack Overflow Blog
Why is Python Growing So Quickly?
We recently showed that, based on Stack Overflow question visits, Python has a claim to being the fastest-growing major programming language, and that it has become the most visited tag on Stack Overflow within high-income countries. Why is Python growing…
Jetbrains и Python Software Foundation опубликовали результаты опроса разработчиков на языке Python [1] в котором получили множество ответов и сформировали картину-образ сообщества.
Из интересного и ожидаемого - Python наиболее активно используется для веб-разработки и анализа данных.
В задачах Data Analysis и Machine Learning наиболее заметный рост. На сегодняшний день Python - это язык с невысоким порогом входа для обучения и огромным числом готовых пакетов для обработки данных.
И, конечно же, первичные анонимизированные данные опроса также опубликованы [2].
Если Вы хотите поучиться программировать, но не знаете чему, то попробуйте начать с Python. Это очень хороший стартовый язык, после него несложно учить более тяжелые языки вроде Java и C++, а для задач в обработке данных он годится сразу же.
Ссылки:
[1] https://www.jetbrains.com/research/python-developers-survey-2017/
[2] http://jb.gg/pythondevsurvey2017raw
#python #polls #data
Из интересного и ожидаемого - Python наиболее активно используется для веб-разработки и анализа данных.
В задачах Data Analysis и Machine Learning наиболее заметный рост. На сегодняшний день Python - это язык с невысоким порогом входа для обучения и огромным числом готовых пакетов для обработки данных.
И, конечно же, первичные анонимизированные данные опроса также опубликованы [2].
Если Вы хотите поучиться программировать, но не знаете чему, то попробуйте начать с Python. Это очень хороший стартовый язык, после него несложно учить более тяжелые языки вроде Java и C++, а для задач в обработке данных он годится сразу же.
Ссылки:
[1] https://www.jetbrains.com/research/python-developers-survey-2017/
[2] http://jb.gg/pythondevsurvey2017raw
#python #polls #data
JetBrains
Python Developers Survey 2017 - Results
At the very end of 2017, the Python Software Foundation together with JetBrains conducted an official Python Developers Survey. We set out to identify the latest trends and gather insight into how the Python development world looks today. Over 9,500 developers…
Для тех кто работает с данными, полезная визуализация и база знаний по библиотекам на Python для работы с данными [1].
Ссылки:
[1] https://community.ibm.com/community/user/datascience/blogs/paco-nathan/2019/03/12/a-landscape-diagram-for-python-data
#python #data
Ссылки:
[1] https://community.ibm.com/community/user/datascience/blogs/paco-nathan/2019/03/12/a-landscape-diagram-for-python-data
#python #data
Вышла новая версия Jupiter Notebook, под новым названием Jupiter Book [1]
Из новых возможностей:
- переход на язык разметки MyST Markdown [2]
- новая система сборки с поддержкой Jupiter Cache [3], запускающая исполнение notebook'а только при изменении кода
- больше интерактивности
- возможность сборки с командной строки
Jupiter Book - это стандарт де-факто для работы аналитиков и специалистов по data science и изменения в нём важны для всех кто работает с данными на регулярной основе.
UPD. Как меня поправляют читатели, это не новая версия версия Jupiter Notebook, но возможность преобразовывать .ipynb в книжке в виде новой версии инструмента. Что, впрочем, не отменяет его полезность.
Ссылки:
[1] https://blog.jupyter.org/announcing-the-new-jupyter-book-cbf7aa8bc72e
[2] https://myst-parser.readthedocs.io/en/latest/
[3] https://jupyter-cache.readthedocs.io/
#data #datascience #python
Из новых возможностей:
- переход на язык разметки MyST Markdown [2]
- новая система сборки с поддержкой Jupiter Cache [3], запускающая исполнение notebook'а только при изменении кода
- больше интерактивности
- возможность сборки с командной строки
Jupiter Book - это стандарт де-факто для работы аналитиков и специалистов по data science и изменения в нём важны для всех кто работает с данными на регулярной основе.
UPD. Как меня поправляют читатели, это не новая версия версия Jupiter Notebook, но возможность преобразовывать .ipynb в книжке в виде новой версии инструмента. Что, впрочем, не отменяет его полезность.
Ссылки:
[1] https://blog.jupyter.org/announcing-the-new-jupyter-book-cbf7aa8bc72e
[2] https://myst-parser.readthedocs.io/en/latest/
[3] https://jupyter-cache.readthedocs.io/
#data #datascience #python
Medium
Announcing the new Jupyter Book
Note: this announcement is cross-posted between the Jupyter Blog and the Executable Book Project updates blog