Хорошая картинка (источник) отображающая основные дата профессии для тех кто выбирает чему учиться и куда переквалифицироваться.
К ним можно добавить ещё 3:
- data quality engineer (спец по качеству данных, подвид дата аналитика)
- platform engineer (дата инженерия на основе облачных платформ, подвид дата инженера)
- analytics engineer (гибрид дата аналитика и дата инженера)
И более редкая карьера в ответе на вопрос "любите ли Вы программировать?". Если да, то есть ещё путь в разработчики data продуктов.
Ничего не упустил?
#data #thoughts #career
К ним можно добавить ещё 3:
- data quality engineer (спец по качеству данных, подвид дата аналитика)
- platform engineer (дата инженерия на основе облачных платформ, подвид дата инженера)
- analytics engineer (гибрид дата аналитика и дата инженера)
И более редкая карьера в ответе на вопрос "любите ли Вы программировать?". Если да, то есть ещё путь в разработчики data продуктов.
Ничего не упустил?
#data #thoughts #career
2✍10👍2
О предубеждениях программистов
На днях мне довелось общаться с командой которая делает один любопытный продукт по обработке данных. В какой-то момент они решили добавить в продукт работы с данными с помощью ИИ и, поначалу, поэкспериментировали с подключением ChatGPT, а потом весь механизм полностью заменили на движок llama.cpp (не путайте с Ollama) с помощью и перевели всю работу с данными в режим local-only. Это когда через интерфейс приложения можно скачать одну из двух моделей Llama 3.2 или Qwen 2.5 и с их помощью локально с данными работать.
Надо ли объяснять что тут не так? В первом случае они сделали решение которое было cloud-only, без облачного сервиса не работало. Во втором случае они сделали решение local-only, очень приватное, и почти неработоспособное. Кроме того что оно кушает много памяти и диска, оно ещё и замораживает компьютер пользователя, а пользователи могут быть не самые продвинутые по навыкам и по технике.
Мне буквально пришлось им объяснять что для большинства пользователей нужен выбор и оба подхода некорректны по умолчанию. Кого-то не пугают облачные LLM, у кого-то есть собственная инфраструктура с развертными Ollama или LM Studio на сервере или десктопе с сетевым подключением, кто-то пользуется хостинг провайдерами - Digital Ocean, Nebius, Яндекс.Клауд и др.
Поскольку эту команду я знаю достаточно давно и они из open source мира то подозреваю что первоначальное использование ChatGPT было скорее экспериментом, а потом они стремительно переключились на local-first решение как то которое они считают наиболее приемлемым.
Я совсем не уверен что мне удастся их переубедить, потому что у них есть два мощнейших предубеждения. Это Анти бигтех и Анти ИИ (пока не могу подобрать названий получше).
Первое заключается в том чтобы не использовать никаких сервисов биг техов и других крупных облачных провайдеров. Это довольно мощная установка в большой часть европейского open source движения в том что использовать только открытые альтернативы. Не использовать хостинг биг техов, не использовать их облачные сервисы, не использовать системы звонков/коммуникации и тд. Эта предустановка распространяется и на все американские ИИ стартапы и сейчас множится на концепцию цифрового суверенитета ЕС.
Второе - Анти ИИ, происходит от Анти бигтех, но с установкой того что большие ИИ компании "сжирают Интернет" и все открытые цифровые артефакты: открытый код, открытые данные, книги, статьи, иные открытые результаты, всё идёт в их обучение. Она выражается в том что обработка данных через ИИ не реализуется чтобы "не кормить ИИ своими данными".
Всё это в дополнение другим традиционным предубеждениям программных команд: Не изобретено здесь, Пользователь всегда неправ и ещё многих других.
#opensource #programming #thoughts #data #ai
На днях мне довелось общаться с командой которая делает один любопытный продукт по обработке данных. В какой-то момент они решили добавить в продукт работы с данными с помощью ИИ и, поначалу, поэкспериментировали с подключением ChatGPT, а потом весь механизм полностью заменили на движок llama.cpp (не путайте с Ollama) с помощью и перевели всю работу с данными в режим local-only. Это когда через интерфейс приложения можно скачать одну из двух моделей Llama 3.2 или Qwen 2.5 и с их помощью локально с данными работать.
Надо ли объяснять что тут не так? В первом случае они сделали решение которое было cloud-only, без облачного сервиса не работало. Во втором случае они сделали решение local-only, очень приватное, и почти неработоспособное. Кроме того что оно кушает много памяти и диска, оно ещё и замораживает компьютер пользователя, а пользователи могут быть не самые продвинутые по навыкам и по технике.
Мне буквально пришлось им объяснять что для большинства пользователей нужен выбор и оба подхода некорректны по умолчанию. Кого-то не пугают облачные LLM, у кого-то есть собственная инфраструктура с развертными Ollama или LM Studio на сервере или десктопе с сетевым подключением, кто-то пользуется хостинг провайдерами - Digital Ocean, Nebius, Яндекс.Клауд и др.
Поскольку эту команду я знаю достаточно давно и они из open source мира то подозреваю что первоначальное использование ChatGPT было скорее экспериментом, а потом они стремительно переключились на local-first решение как то которое они считают наиболее приемлемым.
Я совсем не уверен что мне удастся их переубедить, потому что у них есть два мощнейших предубеждения. Это Анти бигтех и Анти ИИ (пока не могу подобрать названий получше).
Первое заключается в том чтобы не использовать никаких сервисов биг техов и других крупных облачных провайдеров. Это довольно мощная установка в большой часть европейского open source движения в том что использовать только открытые альтернативы. Не использовать хостинг биг техов, не использовать их облачные сервисы, не использовать системы звонков/коммуникации и тд. Эта предустановка распространяется и на все американские ИИ стартапы и сейчас множится на концепцию цифрового суверенитета ЕС.
Второе - Анти ИИ, происходит от Анти бигтех, но с установкой того что большие ИИ компании "сжирают Интернет" и все открытые цифровые артефакты: открытый код, открытые данные, книги, статьи, иные открытые результаты, всё идёт в их обучение. Она выражается в том что обработка данных через ИИ не реализуется чтобы "не кормить ИИ своими данными".
Всё это в дополнение другим традиционным предубеждениям программных команд: Не изобретено здесь, Пользователь всегда неправ и ещё многих других.
#opensource #programming #thoughts #data #ai
1✍7🔥6💯5