Ivan Begtin
9.3K subscribers
2.08K photos
3 videos
102 files
4.81K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and other gov related and tech stuff.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Secure contacts [email protected]
加入频道
Золотая эпоха баз данных

Я несколько раз уже слышал в выступлениях разработчиков систем управления базами данных (DBMS) о том что сейчас золотая эпоха их создания, и не только самих баз данных, но и инструментов, фреймворков и новых продуктов для работы с данными, всё что связано с дата инженерией.

И да, после размышлений я прихожу к тому же выводу. Число новых DBMS, как совершенно новых, так и использующих существующие движки в расширениями и оптимизацией, растёт стремительно.

Можно посмотреть, например, на базу Database of Databases чтобы увидеть сколько новых движков появляется ежегодно. Или можно посмотреть на аналитические DBMS в бенчмарке Clickbench. Там десятки конкурирующих инструментов и платформ и это ещё не все движки охвачены.

Аналогично с библиотеками с библиотеками работы с датафреймами. Их уже больше десятка в среде дата аналитиков работа с pandas это скорее унаследованный код чем быстрый код. Есть бенчмарки Database-like ops покрывает 13 библиотек (не самый актуальный, 4 летней давности) и полугодовой давности DataFrames at Scale Comparison с покрытием 4-х библиотек. И это только те бенчмарки которые нейтральные, а есть множество которые делают сами разработчики. Чаще не нейтрально, а подгоняя под особенности своей библиотеки.

Похожая ситуация с ETL/ELT инструментами, BI/OLAP/визуализацией данных, инструментами извлечения данных и так далее.

Это всё формирует нереальную конкуренцию, а вместе с ней усилия команд по непрерывному улучшению их продуктов. К примеру, согласно ClickHouse Versions Benchmark производительность ClickHouse с ранних версий до текущих выросла почти вдвое. А скорость DuckDB выросла от 3 до 10 раз, а и возможность работы с данными большего размера в 10 раз на том же оборудовании.

Всё это о том что технологии работы с данными развиваются очень быстро. Гораздо быстрее чем в предыдущие десятилетия. В них вкладывается и больше инвестиций, и в них больше потребности.

Всё это происходит параллельно с продолжающимся снижением стоимости терабайта, в облаке, и в приобретении дисков для личного хранения.

В итоге расшифровка фразы большие данные мертвы сводится к тому что стоимость работы с данными относительно большого объёма резко снижается, а обработка десятков терабайт структурированных данных на десктопе перестала быть невозможной.

#databases #rdbms #datatools #thoughts