Свежий доклад ОЭСР по применению ИИ в науке [1], вернее это даже не доклад, а сборник статей объединённых одной темой. Много примеров того как ИИ уже сейчас применяется в научной работе и о том как может применяться в ближайшем будущем. В целом документ ИИ-оптимистичен, практически все тексты о том как ИИ хорош и полезен во всём: автоматизации лабораторий, поиске лекарств, удобных инструментах управления знаниями и так далее.
Важная часть текстов посвящена вопросу Is science getting harder? (Становится ли тяжелее заниматься наукой?) и ответ на этот вопрос - да, а ИИ рассматривается как важный усилитель работы учёных.
Почитать полезно, поскольку это та область которая как раз должна вызывать наименьшие опасения этики работы с ИИ. Возможно.
Ссылки:
[1] https://www.oecd.org/publications/artificial-intelligence-in-science-a8d820bd-en.htm
#openscience #ai #readings
Важная часть текстов посвящена вопросу Is science getting harder? (Становится ли тяжелее заниматься наукой?) и ответ на этот вопрос - да, а ИИ рассматривается как важный усилитель работы учёных.
Почитать полезно, поскольку это та область которая как раз должна вызывать наименьшие опасения этики работы с ИИ. Возможно.
Ссылки:
[1] https://www.oecd.org/publications/artificial-intelligence-in-science-a8d820bd-en.htm
#openscience #ai #readings
OECD
Artificial Intelligence in Science
The rapid advances of artificial intelligence (AI) in recent years have led to numerous creative applications in science. Accelerating the productivity of science could be the most economically and socially valuable of all the uses of AI.
В рубрике как это работает у них о публикации открытых научных данных в Финляндии. В Финляндии Министерство образования и культуры создало и поддерживает портал Fairdata.fi [1] для распространения подхода принципов FAIR при публикации научных данных [2].
Помимо руководств и обучения инициатива включает 5 проектов помогающих исследователям:
- IDA Research Data Storage
- Etsin Research Dataset Finder
- Qvain Research Dataset Description Tool
- Digital Preservation Service for Research Data
- AVAA Open Data Publishing Platform
Например, система Etsin позволяет искать по более чем 5 тысячам наборам данных и размещать там свои наборы. А в системе AVAA доступны каталоги геоданных.
Кроме всего прочего данные из Etsin доступны на иследовательском портале страны Research.fi [3]. В свою очередь Research.fi был создан в 2020 году как CRIS (Current Research Information System) страны и включает, как открытые научные данные, так и базу публикаций, исследователей, исследовательских центров.
Ссылки:
[1] https://www.fairdata.fi/en/
[2] https://www.go-fair.org/fair-principles/
[3] https://research.fi/en/results/datasets
#finland #research #openaccess #opendata #openscience
Помимо руководств и обучения инициатива включает 5 проектов помогающих исследователям:
- IDA Research Data Storage
- Etsin Research Dataset Finder
- Qvain Research Dataset Description Tool
- Digital Preservation Service for Research Data
- AVAA Open Data Publishing Platform
Например, система Etsin позволяет искать по более чем 5 тысячам наборам данных и размещать там свои наборы. А в системе AVAA доступны каталоги геоданных.
Кроме всего прочего данные из Etsin доступны на иследовательском портале страны Research.fi [3]. В свою очередь Research.fi был создан в 2020 году как CRIS (Current Research Information System) страны и включает, как открытые научные данные, так и базу публикаций, исследователей, исследовательских центров.
Ссылки:
[1] https://www.fairdata.fi/en/
[2] https://www.go-fair.org/fair-principles/
[3] https://research.fi/en/results/datasets
#finland #research #openaccess #opendata #openscience
Одна из крупнейших и малоизвестных поисковых систем по научным публикациям это BASE [1], проект немецкого Bielefeld University в котором собрано более 338 миллионов научных публикаций из более чем 11 тысяч источников.
В том числе в поисковом индексе BASE есть более 18.5 миллионов записей с исследовательскими данными, большая их часть, конечно, из систем выдачи DOI таких как Datacite и Crossref.
У проекта есть REST API и интерфейс доступа по протоколу OAI-PMH,
Ссылки:
[1] https://www.base-search.net
#opendata #openaccess #openscience #researchdata #datasearch
В том числе в поисковом индексе BASE есть более 18.5 миллионов записей с исследовательскими данными, большая их часть, конечно, из систем выдачи DOI таких как Datacite и Crossref.
У проекта есть REST API и интерфейс доступа по протоколу OAI-PMH,
Ссылки:
[1] https://www.base-search.net
#opendata #openaccess #openscience #researchdata #datasearch
В рубрике как это работает у них реестр исследовательской инфраструктуры в Австрии [1]. Всего 2300 объектов среди которых десятки банков данных, порталов данных, научных репозиториев (статей, данных и тд.), тестовых лабораторий, специализированных лабораторий и устройств, обсерваторий и другой инфраструктуры.
Во многих странах такая инфраструктура существует, не во всех это столь тщательно систематизировано.
С точки зрения данных интересен список из 127 научных дата архивов, репозиториев и баз данных.
Из любопытного, по каждому объекту научной инфраструктуры присутствуют:
- условия использования
- ссылки на проводимые проекты
- ссылки на научные публикации с упоминанием.
Ссылки:
[1] https://forschungsinfrastruktur.bmbwf.gv.at/en
#openscience #openaccess #austria
Во многих странах такая инфраструктура существует, не во всех это столь тщательно систематизировано.
С точки зрения данных интересен список из 127 научных дата архивов, репозиториев и баз данных.
Из любопытного, по каждому объекту научной инфраструктуры присутствуют:
- условия использования
- ссылки на проводимые проекты
- ссылки на научные публикации с упоминанием.
Ссылки:
[1] https://forschungsinfrastruktur.bmbwf.gv.at/en
#openscience #openaccess #austria
В рубрике как это устроено у них открытые научные данные в такой, далеко не всем известной научной дисциплине как материаловедение.
Как и ряд других дисциплин она активно сдвигается в сторону открытости науки и открытости исследовательских данных.
Вот пример, 4-х научных проектов:
- AFlow [1] - база из 3.5 миллионов компонентов материалов и более чем 734 миллионов их свойств, под Public Domain для научного использования
- OQDM [2] база рассчитанных термодинамических и структурных характеристик более чем 1.2 миллионов материалов. Под Creative Commons
- The Materials Project [3] база по более чем 320 тысячам молекулам и материалам, а также проекты по машинному обучению предсказания свойств материалов
- NOMADS [4] база из 13 миллионов записей о материалах, как теоретических, так и полученных из экспериментов
У всех проектов лицензии на распространение материалов или Creative Commons или Public Domain, есть API на получение и на загрузку данных. Их наборы данных и отдельные записи индексируются научными поисковиками и агрегаторами. Ко всем есть API, библиотеки на Python для автоматической работы с данными, открытый код и сформировавшаяся экосистема.
Общий объём раскрываемых данных измеряется в сотнях теребайт. Начиная с 100 GB в OQMD и до 119 TB в NOMAD.
Ссылки:
[1] http://aflowlib.org/
[2] https://oqmd.org/
[3] https://next-gen.materialsproject.org/
[4] https://nomad-lab.eu/nomad-lab/
#opendata #openaccess #openscience #science #research #materials #molecules
Как и ряд других дисциплин она активно сдвигается в сторону открытости науки и открытости исследовательских данных.
Вот пример, 4-х научных проектов:
- AFlow [1] - база из 3.5 миллионов компонентов материалов и более чем 734 миллионов их свойств, под Public Domain для научного использования
- OQDM [2] база рассчитанных термодинамических и структурных характеристик более чем 1.2 миллионов материалов. Под Creative Commons
- The Materials Project [3] база по более чем 320 тысячам молекулам и материалам, а также проекты по машинному обучению предсказания свойств материалов
- NOMADS [4] база из 13 миллионов записей о материалах, как теоретических, так и полученных из экспериментов
У всех проектов лицензии на распространение материалов или Creative Commons или Public Domain, есть API на получение и на загрузку данных. Их наборы данных и отдельные записи индексируются научными поисковиками и агрегаторами. Ко всем есть API, библиотеки на Python для автоматической работы с данными, открытый код и сформировавшаяся экосистема.
Общий объём раскрываемых данных измеряется в сотнях теребайт. Начиная с 100 GB в OQMD и до 119 TB в NOMAD.
Ссылки:
[1] http://aflowlib.org/
[2] https://oqmd.org/
[3] https://next-gen.materialsproject.org/
[4] https://nomad-lab.eu/nomad-lab/
#opendata #openaccess #openscience #science #research #materials #molecules
В рубрике как это устроено у них японский национальный репозиторий результатов научных работ IRDB [1], включает 4.1 миллиона ресурсов, большая часть которых это научные статьи, журналы, публикации после конференций и так далее, а также боле чем 124 тысячи наборов исследовательских данных. Чем то IRDB схож с проектами OpenAIRE и SciDB, хотя и сделан весьма консервативнее.
В его основе харвестинг метаданных из более чем 700 научных репозиториев [2] в которых реализовано раскрытие метаданных по стандарту JPCOAR [3] через интерфейсы OAI-PMH. Сам репозиторий IDRB также поддерживает доступ через OAI-PMH [4] и с ним можно взаимодействовать программным образом.
Простота харвестинга во многом обеспечена тем что значительная часть репозиториев - это репозитории на базе open-source ПО Weko3 которое является доработанной версией репозитория для научных публикаций Invenio 3 и который и обеспечивает предоставление метаданных через OAI и, также, предоставляет иные, API упрощающие сбор данных. Weko3 был разработан Национальным институтом информатики Японии, той же организацией что управляет IRDB
У IRDB множество недостатков тоже есть:
- нет bulk download, нельзя скачать базу целиком
- нет документированного API, даже интерфейс OAI не упомянут на сайте, не говоря уже о том что он устарел для большей части задач
- схемы данных описания датасетов весьма консервативны. Нет даже разметки schema.org, не говоря уже о DCAT.
В целом проект выглядит проработанным, живым, но замершим в развитии.
Кстати, китайский проект SciDb сделан очень похожим образом. Также есть ПО институциональных репозиториев созданный структурой Китайской академии наук и централизованный архив/поиск индексирующий все эти репозитории.
Возвращаясь к IRDB, например, для Dateno проще автоматизировать сбор метаданных из японских репозиториев напрямую чем индексировать IRDB именно из-за отсутствия другого API кроме OAI.
Ссылки:
[1] https://irdb.nii.ac.jp
[2] https://irdb.nii.ac.jp/en/repositorylist
[3] https://schema.irdb.nii.ac.jp/en
[4] https://irdb.nii.ac.jp/oai
#opendata #data #openaccess #japan #china #openscience
В его основе харвестинг метаданных из более чем 700 научных репозиториев [2] в которых реализовано раскрытие метаданных по стандарту JPCOAR [3] через интерфейсы OAI-PMH. Сам репозиторий IDRB также поддерживает доступ через OAI-PMH [4] и с ним можно взаимодействовать программным образом.
Простота харвестинга во многом обеспечена тем что значительная часть репозиториев - это репозитории на базе open-source ПО Weko3 которое является доработанной версией репозитория для научных публикаций Invenio 3 и который и обеспечивает предоставление метаданных через OAI и, также, предоставляет иные, API упрощающие сбор данных. Weko3 был разработан Национальным институтом информатики Японии, той же организацией что управляет IRDB
У IRDB множество недостатков тоже есть:
- нет bulk download, нельзя скачать базу целиком
- нет документированного API, даже интерфейс OAI не упомянут на сайте, не говоря уже о том что он устарел для большей части задач
- схемы данных описания датасетов весьма консервативны. Нет даже разметки schema.org, не говоря уже о DCAT.
В целом проект выглядит проработанным, живым, но замершим в развитии.
Кстати, китайский проект SciDb сделан очень похожим образом. Также есть ПО институциональных репозиториев созданный структурой Китайской академии наук и централизованный архив/поиск индексирующий все эти репозитории.
Возвращаясь к IRDB, например, для Dateno проще автоматизировать сбор метаданных из японских репозиториев напрямую чем индексировать IRDB именно из-за отсутствия другого API кроме OAI.
Ссылки:
[1] https://irdb.nii.ac.jp
[2] https://irdb.nii.ac.jp/en/repositorylist
[3] https://schema.irdb.nii.ac.jp/en
[4] https://irdb.nii.ac.jp/oai
#opendata #data #openaccess #japan #china #openscience