Возвращаю на голову шляпу дата инженера и продолжаю про разные инструменты.
Одна из рабочих идей у меня сейчас - это инструмент автоматического документирования датасетов/баз данных с приоритетом на "дикие данные" когда файл с данными есть, а документации на него нет. Очень частая ситуация с порталами открытых данных.
Причём потребность в таком инструменте уже очень давно есть, а вот наглядно я видел только облачный сервис CastorDoc который в этом продвинулся и только некоторые дата каталоги. А я сам экспериментировал и создал утилиту metacrafter для идентификации семантических типов данных. Но потребность в автодокументировании шире. Это, как минимум:
1. Автоматизация описания полей набора данных, желательно на нескольких языках: английский, испанский, русский, армянский и тд.
2. Написание описания набора данных так чтобы по датасету или его части можно было бы рассказать о чём он.
3. Описание структуры датасета не просто перечислением полей, а указание типа, описания полей, числа уникальных записей и тд.
4. Автоидентификация и документирование справочников. Почти всегда эти справочники есть и почти всегда их необходимо идентифицировать и описывать.
5. Автоматическая генерация типовых запросов к данным по аналогии с автогенерацией кода для доступа к API, нужны автосгенерированные запросы для доступа к данным.
Это всё самое очевидное, чуть более неочевидное это генерация документации по шаблонам, на разных языках и многое другое.
Самое простое и быстрое решение которое я вижу - это связка DuckDB + LLM модель, простые эксперименты подтверждают что это возможно и несложно. Но если Вы знаете хорошие/эффективные/удобные инструменты документирования датасетов - поделитесь, интересно их посмотреть в работе. Особенно те что с открытым кодом.
#opendata #datadocumentation #opensource #datatools #ideas
Одна из рабочих идей у меня сейчас - это инструмент автоматического документирования датасетов/баз данных с приоритетом на "дикие данные" когда файл с данными есть, а документации на него нет. Очень частая ситуация с порталами открытых данных.
Причём потребность в таком инструменте уже очень давно есть, а вот наглядно я видел только облачный сервис CastorDoc который в этом продвинулся и только некоторые дата каталоги. А я сам экспериментировал и создал утилиту metacrafter для идентификации семантических типов данных. Но потребность в автодокументировании шире. Это, как минимум:
1. Автоматизация описания полей набора данных, желательно на нескольких языках: английский, испанский, русский, армянский и тд.
2. Написание описания набора данных так чтобы по датасету или его части можно было бы рассказать о чём он.
3. Описание структуры датасета не просто перечислением полей, а указание типа, описания полей, числа уникальных записей и тд.
4. Автоидентификация и документирование справочников. Почти всегда эти справочники есть и почти всегда их необходимо идентифицировать и описывать.
5. Автоматическая генерация типовых запросов к данным по аналогии с автогенерацией кода для доступа к API, нужны автосгенерированные запросы для доступа к данным.
Это всё самое очевидное, чуть более неочевидное это генерация документации по шаблонам, на разных языках и многое другое.
Самое простое и быстрое решение которое я вижу - это связка DuckDB + LLM модель, простые эксперименты подтверждают что это возможно и несложно. Но если Вы знаете хорошие/эффективные/удобные инструменты документирования датасетов - поделитесь, интересно их посмотреть в работе. Особенно те что с открытым кодом.
#opendata #datadocumentation #opensource #datatools #ideas
ChatGPT теперь даёт возможность поиска и интерактива без авторизации [1] вот что конкуренция творит, а всего-то китайцы запустили Deepseek😜
Ссылки:
[1] https://chatgpt.com/?hints=search
#llm #ai #chatgpt
Ссылки:
[1] https://chatgpt.com/?hints=search
#llm #ai #chatgpt
Forwarded from Демография от Ракши/Demographic news and thoughts
https://dhsprogram.com/
https://dhsprogram.com/data/available-datasets.cfm
https://www.idhsdata.org/idhs/
https://www.statcompiler.com/en/
https://dhsprogram.com/Countries/index.cfm?show=map#activeType=_all&printStyle=false&mLon=12.8&mLat=11.7&mLev=2&title=Where%20We%20Work&desc=
https://dhsprogram.com/search/
https://dhsprogram.com/Research/Featured-Studies.cfm
Самая лучшая в мире база данных демографических обследований по развивающимся странам может кануть в небытие уже завтра или на днях.
Если это случится, то "спасибо" Трампу, будь он неладен.
Выражение "СЛОН в посудной лавке" играет новыми красками, преимущественно чёрными.
Скачивайте всё, что можно.
Эти данные используются в т. ч. ООН для демографического прогнозирования.
По многим странам других данных нет, или они низкого качества.
https://dhsprogram.com/data/available-datasets.cfm
https://www.idhsdata.org/idhs/
https://www.statcompiler.com/en/
https://dhsprogram.com/Countries/index.cfm?show=map#activeType=_all&printStyle=false&mLon=12.8&mLat=11.7&mLev=2&title=Where%20We%20Work&desc=
https://dhsprogram.com/search/
https://dhsprogram.com/Research/Featured-Studies.cfm
Самая лучшая в мире база данных демографических обследований по развивающимся странам может кануть в небытие уже завтра или на днях.
Если это случится, то "спасибо" Трампу, будь он неладен.
Выражение "СЛОН в посудной лавке" играет новыми красками, преимущественно чёрными.
Скачивайте всё, что можно.
Эти данные используются в т. ч. ООН для демографического прогнозирования.
По многим странам других данных нет, или они низкого качества.
Dhsprogram
The DHS Program - Quality information to plan, monitor and improve population, health, and nutrition programs
The DHS Program assists countries worldwide in the collection and use of data to monitor and evaluate population, health, and nutrition programs.
Тренды, тренды и снова тренды. Я про какие-то из них писал в конце декабря и начале января, а какие-то пропустил, много разговоров которые слышу прямо или косвенно:
- Common Digital Infrastructure. Одна из актуальных тем для общественных, исследовательских, некоммерческих и культурных проектов в том что все они зависят от инфраструктуры Big Tech'ов, что немало многих напрягает. В мире сейчас нет проектов по современной инфраструктуре для хранения того что называется digital common goods. Если, к примеру, Вы хотите сделать большой и интересный набор данных или бесплатный открытый инструмент, то надо для этого, или покупать инфраструктуру в одном из очень крупных облаков, или клянчить инфраструктурные ресурсы в рамках программ Big Tech (есть, как минимум, у Amazon) или дороже делать своими силами.
- Демократизация аналитики на данных большого объёма. Новые/старые инструменты Clickhouse, DuckDB, Polars и data lakes разного типа и другие позволяют снизить объёмы хранимых данных, значительно упростить работу с данными большого объёма для тех кто раньше с ними работать не мог. Это такая маленькая-большая революция в работе с данными которая будет всё более превращаться в мэйнстрим по мере появления интерактивных инструментов. Это относится и к языковым моделям которые всё более успешно запускаются на устройствах весьма недорогих и компактных. Я об этом пишу регулярно тут.
#trends #data
- Common Digital Infrastructure. Одна из актуальных тем для общественных, исследовательских, некоммерческих и культурных проектов в том что все они зависят от инфраструктуры Big Tech'ов, что немало многих напрягает. В мире сейчас нет проектов по современной инфраструктуре для хранения того что называется digital common goods. Если, к примеру, Вы хотите сделать большой и интересный набор данных или бесплатный открытый инструмент, то надо для этого, или покупать инфраструктуру в одном из очень крупных облаков, или клянчить инфраструктурные ресурсы в рамках программ Big Tech (есть, как минимум, у Amazon) или дороже делать своими силами.
- Демократизация аналитики на данных большого объёма. Новые/старые инструменты Clickhouse, DuckDB, Polars и data lakes разного типа и другие позволяют снизить объёмы хранимых данных, значительно упростить работу с данными большого объёма для тех кто раньше с ними работать не мог. Это такая маленькая-большая революция в работе с данными которая будет всё более превращаться в мэйнстрим по мере появления интерактивных инструментов. Это относится и к языковым моделям которые всё более успешно запускаются на устройствах весьма недорогих и компактных. Я об этом пишу регулярно тут.
#trends #data
В рубрике интересных наборов данных много датасетов связанных с переходом власти в США, в первую очередь созданных активистами спасающими данные скрываемые/удаляемые администрацией Трампа.
End of term archive [1] совместный проект International Internet Preservation Consortium (IIPC), National Digital Infrastructure and Preservation Program (NDIIPP), Университетов Стенфорда и Джорджа Вашингтона, по архивации всех данных и цифровых материалов при смене президентов в США. Включает коллекции за 2008, 2012, 2016 и 2020 годы. Общий объём датасетов порядка 450TB.
Работа идёт в форме открытого кода [2] и открытых датасетов [3] и сейчас продолжается архивация ресурсов связанных с прошлой администрацией Байдена [4]. Копия данных хранится в Интернет Архиве [5] и, на сегодняшний день, составляет более 582 TB
Другой проект ForeignAssistance dot gov emergency backup [7] архив государственного сайта ForeignAssistance.gov где USAID раскрывали аналитику международной помощи. Он, также, был закрыт во время закрытия USAID. Всё что удалось сохранить автор проекта превратил в наборы данных CSV
Data.gov archive [8] проект по архивации данных из портала Data.gov от Harvard Law School Library и все данные они выложили в открытый каталог данных большого объёма Source Cooperative [9]. Лично я не ожидал что они выложат его именно туда, в Source Cooperative по большей части геоданные, но зато и хранение заточено под облачное хранение в амазоне данных большого объёма. Всего 16TB
Проект Environment Data & Governance Initiative продолжил работу после первого срока Трампа и с января месяца они постоянно сохраняют климатические данные и ресурсы. Подобнее в их блоге [10]
—
А также существует значительное число инициатив меньшего масштаба.
Сохранение данных, цифровых объектов и знаний становится всё более значимой задачей. Кто-то выделяет на него личное время, кто-то ресурсы и сотрудников (проект EOT Archive), кто-то быстро находит финансирование (проект архива Data.gov был профинансирован Фондом Братьев Рокфеллеров).
Ссылки:
[1] https://eotarchive.org
[2] https://github.com/end-of-term
[3] https://eotarchive.org/data/
[4] https://github.com/end-of-term/eot2024
[5] https://archive.org/details/EndofTermWebCrawls
[6] https://archive.org/details/EndOfTerm2024WebCrawls
[7] https://foreignassistance.andrewheiss.com/
[8] https://lil.law.harvard.edu/blog/2025/02/06/announcing-data-gov-archive/
[9] https://source.coop/repositories/harvard-lil/gov-data/description
[10] https://envirodatagov.org/blog/
#digitalpreservation #webarchives #trump #usa
End of term archive [1] совместный проект International Internet Preservation Consortium (IIPC), National Digital Infrastructure and Preservation Program (NDIIPP), Университетов Стенфорда и Джорджа Вашингтона, по архивации всех данных и цифровых материалов при смене президентов в США. Включает коллекции за 2008, 2012, 2016 и 2020 годы. Общий объём датасетов порядка 450TB.
Работа идёт в форме открытого кода [2] и открытых датасетов [3] и сейчас продолжается архивация ресурсов связанных с прошлой администрацией Байдена [4]. Копия данных хранится в Интернет Архиве [5] и, на сегодняшний день, составляет более 582 TB
Другой проект ForeignAssistance dot gov emergency backup [7] архив государственного сайта ForeignAssistance.gov где USAID раскрывали аналитику международной помощи. Он, также, был закрыт во время закрытия USAID. Всё что удалось сохранить автор проекта превратил в наборы данных CSV
Data.gov archive [8] проект по архивации данных из портала Data.gov от Harvard Law School Library и все данные они выложили в открытый каталог данных большого объёма Source Cooperative [9]. Лично я не ожидал что они выложат его именно туда, в Source Cooperative по большей части геоданные, но зато и хранение заточено под облачное хранение в амазоне данных большого объёма. Всего 16TB
Проект Environment Data & Governance Initiative продолжил работу после первого срока Трампа и с января месяца они постоянно сохраняют климатические данные и ресурсы. Подобнее в их блоге [10]
—
А также существует значительное число инициатив меньшего масштаба.
Сохранение данных, цифровых объектов и знаний становится всё более значимой задачей. Кто-то выделяет на него личное время, кто-то ресурсы и сотрудников (проект EOT Archive), кто-то быстро находит финансирование (проект архива Data.gov был профинансирован Фондом Братьев Рокфеллеров).
Ссылки:
[1] https://eotarchive.org
[2] https://github.com/end-of-term
[3] https://eotarchive.org/data/
[4] https://github.com/end-of-term/eot2024
[5] https://archive.org/details/EndofTermWebCrawls
[6] https://archive.org/details/EndOfTerm2024WebCrawls
[7] https://foreignassistance.andrewheiss.com/
[8] https://lil.law.harvard.edu/blog/2025/02/06/announcing-data-gov-archive/
[9] https://source.coop/repositories/harvard-lil/gov-data/description
[10] https://envirodatagov.org/blog/
#digitalpreservation #webarchives #trump #usa
В рубрике интересной визуализации данных DataRepublican [1] проект по визуализации доноров и получателей средств НКО в США и ряд других визуализаций. Можно сказать этакое пересечение Республиканской партии США и дата журналистики, редкое явление, но можно убедиться что реальное. На них ссылаются Wikileaks [2] подсвечивая расходы денег налогоплательщиков США на Internews [3], НКО получавшую существенную долю средств от USAID и поддерживавшее значительную часть СМИ по всему миру.
Что характерно в аккаунте Wikileaks большая волна идёт против USAID [4] с публикациями множества документов подтверждающих что мол они "лицемерные нехорошие ребята" и прямой инструмент мягкой силы США. В общем немного странно видеть такое единодушие WikiLeaks и республиканских блогеров, но допускаю что что-то пропустил.
А теперь про чисто техническое
Сама визуализация на DataRepublican интересная ещё и по тому как она сделана. Я вначале думал что там какая-то графовая база данных внутри, вроде Neo4J и сложные запросы через openCypher, но всё оказалось интереснее. В графах они подгружают на клиента ZIP файлы с CSV файлами внутри, около 7 мегабайт и распаковывают и отображают их через Javascript.
Очень оригинальное решение, я давно такого не видел. Вместо API грузить на клиента большие заархивированные батчи и обрабатывать их там после распаковки.
У них всё это, данные и код, есть в открытом репозитории, можно будет как-нибудь изучить [5]
Ссылки:
[1] https://datarepublican.com
[2] https://x.com/wikileaks/status/1888098131537183170
[3] https://datarepublican.com/expose/?eins=943027961
[4] https://x.com/wikileaks
[5] https://github.com/DataRepublican/datarepublican
#opendata #opensource #wikileaks #dataviz
Что характерно в аккаунте Wikileaks большая волна идёт против USAID [4] с публикациями множества документов подтверждающих что мол они "лицемерные нехорошие ребята" и прямой инструмент мягкой силы США. В общем немного странно видеть такое единодушие WikiLeaks и республиканских блогеров, но допускаю что что-то пропустил.
А теперь про чисто техническое
Сама визуализация на DataRepublican интересная ещё и по тому как она сделана. Я вначале думал что там какая-то графовая база данных внутри, вроде Neo4J и сложные запросы через openCypher, но всё оказалось интереснее. В графах они подгружают на клиента ZIP файлы с CSV файлами внутри, около 7 мегабайт и распаковывают и отображают их через Javascript.
Очень оригинальное решение, я давно такого не видел. Вместо API грузить на клиента большие заархивированные батчи и обрабатывать их там после распаковки.
У них всё это, данные и код, есть в открытом репозитории, можно будет как-нибудь изучить [5]
Ссылки:
[1] https://datarepublican.com
[2] https://x.com/wikileaks/status/1888098131537183170
[3] https://datarepublican.com/expose/?eins=943027961
[4] https://x.com/wikileaks
[5] https://github.com/DataRepublican/datarepublican
#opendata #opensource #wikileaks #dataviz
В рубрике особо интересных наборов данных "ScatSpotter" 2024 -- A Distributed Dog Poop Detection Dataset [1] аннотированный набор данных фотографий собачьих фекалий объёмом в 42 гигабайт. Шутки-шутками, а очень полезный датасет для тех кто проектирует системы идентификации мусора и его уборки😉
Но, что интереснее, сам датасет опубликован только как torrent ссылка magnet и на распределенной файловой системе IPFS.
Его исходный код есть на Github [3], а датасет можно найти на Academic Torrents [4], например, или через IPFS Gateway [5]
Заодно очень хочется порадоваться за исследователей которые могут заниматься изучением собачьих фекалий, а не вот это вот всё.😂
Ссылки:
[1] https://arxiv.org/abs/2412.16473
[2] https://paperswithcode.com/paper/scatspotter-2024-a-distributed-dog-poop
[3] https://github.com/Erotemic/shitspotter
[4] https://academictorrents.com/details/ee8d2c87a39ea9bfe48bef7eb4ca12eb68852c49
[5] https://ipfs.io/ipfs/QmQonrckXZq37ZHDoRGN4xVBkqedvJRgYyzp2aBC5Ujpyp/?autoadapt=0&immediatecontinue=1&magiclibraryconfirmation=0&redirectURL=bafybeiedwp2zvmdyb2c2axrcl455xfbv2mgdbhgkc3dile4dftiimwth2y&requiresorigin=0&web3domain=0
#opendata #datasets #ipfs #torrents
Но, что интереснее, сам датасет опубликован только как torrent ссылка magnet и на распределенной файловой системе IPFS.
Его исходный код есть на Github [3], а датасет можно найти на Academic Torrents [4], например, или через IPFS Gateway [5]
Заодно очень хочется порадоваться за исследователей которые могут заниматься изучением собачьих фекалий, а не вот это вот всё.😂
Ссылки:
[1] https://arxiv.org/abs/2412.16473
[2] https://paperswithcode.com/paper/scatspotter-2024-a-distributed-dog-poop
[3] https://github.com/Erotemic/shitspotter
[4] https://academictorrents.com/details/ee8d2c87a39ea9bfe48bef7eb4ca12eb68852c49
[5] https://ipfs.io/ipfs/QmQonrckXZq37ZHDoRGN4xVBkqedvJRgYyzp2aBC5Ujpyp/?autoadapt=0&immediatecontinue=1&magiclibraryconfirmation=0&redirectURL=bafybeiedwp2zvmdyb2c2axrcl455xfbv2mgdbhgkc3dile4dftiimwth2y&requiresorigin=0&web3domain=0
#opendata #datasets #ipfs #torrents
Про эксперименты с автоматизированным документированием датасетов, вот живой пример документирования связки DuckDB + LLM. На вход файл в формате Parquet, можно увидеть его содержимое. На выходе таблица с размеченными колонками. Некоторые LLM дают очень хороший результат с описанием колонок на основе их названия с пониманием контекста и расшифровкой полей в зависимости от контекста который LLM тоже понимает.
Осталось дообогатить таблицу семантическим типом данных и добавить генерацию документации. На вход был файл дампа Единого структурированного справочника-каталога лекарственных препаратов (ЕСКЛП), а на выходе его описание.
Осталось понять сделать ли это отдельным инструментом или встроить в ранее созданные утилиты undatum или metacrafter которые тут пересекаются
#datadocumentation #dataengineering #datatools
Осталось дообогатить таблицу семантическим типом данных и добавить генерацию документации. На вход был файл дампа Единого структурированного справочника-каталога лекарственных препаратов (ЕСКЛП), а на выходе его описание.
Осталось понять сделать ли это отдельным инструментом или встроить в ранее созданные утилиты undatum или metacrafter которые тут пересекаются
#datadocumentation #dataengineering #datatools
В качестве регулярного напоминания портал российский государственный портал открытых данных data.gov.ru недоступен почти два года, с начала марта 2023 года. Новая версия должна быть открыта в этом году, но почти наверняка не будет содержать всех данных что были ранее.
В 2022 году я делал полный архивный слепок портала и он доступен для выгрузки [1]. Это 13GB в ZIP файле и около 29GB после распаковки.
Ссылки:
[1] https://hubofdata.ru/dataset/datagovru-20220202
#opendata #opengov #russia #datasets #digitalpreservation #webarchives
В 2022 году я делал полный архивный слепок портала и он доступен для выгрузки [1]. Это 13GB в ZIP файле и около 29GB после распаковки.
Ссылки:
[1] https://hubofdata.ru/dataset/datagovru-20220202
#opendata #opengov #russia #datasets #digitalpreservation #webarchives
hubofdata.ru
Архив данных портала открытых данных РФ data.gov.ru на 2 февраля 2022 г - Хаб открытых данных
Слепок всех данных с портала data.gov.ru на 2 февраля 2022 г.
Включает все файлы данных опубликованных на портале
Объём данных после распаковки 29 ГБ.
Включает все файлы данных опубликованных на портале
Объём данных после распаковки 29 ГБ.
В рубрике плохих примеров публикации данных статистические данные и портал открытых данных Германии. В Германии официальный портал открытых данных govdata.de [1] содержит более 130 тысяч наборов данных, в самых разных форматах. Причём очень много геоданных и не только в машиночитаемых форматах, но и просто в виде PDF файлов карт. Среди этих данных около 3 тысяч наборов - это официальная статистика статслужбы Германии DESTATIS [2]. DESTATIS эксплуатирует платформу публикации официальной статистики Genesis [3] на которой доступны статистические индикаторы.
Так вот что важно знать:
1. Там отсутствует публикация данных в общепринятых стандартах вроде SDMX
2. Данные на сайте платформы отдаются в форматах XLSX, CSV и CSV (flat)
3. А через нац портал статистики они ещё и доступны со ссылкой на CSV формат и XML. Например, тут [4].
Так вот CSV файл из Genesis - это не нормальный CSV файл, а в их собственном формате в результате чего для него требуется отдельный парсер. Выглядит он как на этом скриншоте. Автоматически можно обрабатывать, или XML, или CSV формат который CSV (flat) который доступен только с сайте Genesis.
Про проблемы работы с метаданными Genesis и GovData.de я как-нибудь отдельно, скажу лишь что в отличие от ряда других стран ЕС в Германии всё хорошо с масштабами раскрытия данных, но довольно плохо с системным подходом в этой области и в части публикации статистики у меня лично много вопросов, не про методологию, а именно про удобство доступа.
Ссылки:
[1] https://govdata.de
[2] https://www.destatis.de
[3] https://www-genesis.destatis.de/datenbank/online
[4] https://www.govdata.de/suche/daten/bevolkerung-erwerbstatige-erwerbslose-erwerbspersonen-nichterwerbspersonen-aus-hauptwohnsitzhau35dcf
#opendata #germany #datasets
Так вот что важно знать:
1. Там отсутствует публикация данных в общепринятых стандартах вроде SDMX
2. Данные на сайте платформы отдаются в форматах XLSX, CSV и CSV (flat)
3. А через нац портал статистики они ещё и доступны со ссылкой на CSV формат и XML. Например, тут [4].
Так вот CSV файл из Genesis - это не нормальный CSV файл, а в их собственном формате в результате чего для него требуется отдельный парсер. Выглядит он как на этом скриншоте. Автоматически можно обрабатывать, или XML, или CSV формат который CSV (flat) который доступен только с сайте Genesis.
Про проблемы работы с метаданными Genesis и GovData.de я как-нибудь отдельно, скажу лишь что в отличие от ряда других стран ЕС в Германии всё хорошо с масштабами раскрытия данных, но довольно плохо с системным подходом в этой области и в части публикации статистики у меня лично много вопросов, не про методологию, а именно про удобство доступа.
Ссылки:
[1] https://govdata.de
[2] https://www.destatis.de
[3] https://www-genesis.destatis.de/datenbank/online
[4] https://www.govdata.de/suche/daten/bevolkerung-erwerbstatige-erwerbslose-erwerbspersonen-nichterwerbspersonen-aus-hauptwohnsitzhau35dcf
#opendata #germany #datasets
Полезные ссылки про данные, технологии и не только:
- Perforator [1] профайлер приложений от Яндекса и с использованием eBPF [2]. Полезно для отладки многих сложных и простых нативных приложений и отдельно расписано как профилировать и оптимизировать серверные приложения на Python. Выглядит как очень добротный open source продукт
- GPT Researcher [3] автономный инструмент для исследований с аккуратной простановкой цитат, использует внешние и локальные источники. Интегрирован с OpenAI
- The Illustrated DeepSeek-R1 [4] подробно о DeepSeek в картинках, позволяет легче ухватить суть продукта
- DataLumos [5] проект Университета Мичигана по архивации государственных и социальных данных, построен на базе OpenICPSR [6], данных не очень много, но они адаптированы под исследовательские задачи
- Data Formulator: Create Rich Visualizations with AI [7] полноценный движок для визуализации данных с помощью ИИ. Выпущен исследователями из Microsoft вместе с научной работой, под лицензией MIT. Выглядит как proof-of-concept, не факт что его можно применять в практических задачах сразу и из коробки, но для экспериментов самое оно. И для идей и вдохновения
- Chat2DB [8] открытый код (community edition) и сервис по управлению базами данных с помощью ИИ. Всё самое вкусное вынесли в коммерческие версии, но посмотреть стоит в любом случае.
Ссылки:
[1] https://perforator.tech
[2] https://ebpf.io
[3] https://github.com/assafelovic/gpt-researcher
[4] https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1
[5] https://www.datalumos.org
[6] https://www.openicpsr.org/openicpsr/
[7] https://github.com/microsoft/data-formulator
[8] https://chat2db.ai
#opensource #datatools #opendata #ai
- Perforator [1] профайлер приложений от Яндекса и с использованием eBPF [2]. Полезно для отладки многих сложных и простых нативных приложений и отдельно расписано как профилировать и оптимизировать серверные приложения на Python. Выглядит как очень добротный open source продукт
- GPT Researcher [3] автономный инструмент для исследований с аккуратной простановкой цитат, использует внешние и локальные источники. Интегрирован с OpenAI
- The Illustrated DeepSeek-R1 [4] подробно о DeepSeek в картинках, позволяет легче ухватить суть продукта
- DataLumos [5] проект Университета Мичигана по архивации государственных и социальных данных, построен на базе OpenICPSR [6], данных не очень много, но они адаптированы под исследовательские задачи
- Data Formulator: Create Rich Visualizations with AI [7] полноценный движок для визуализации данных с помощью ИИ. Выпущен исследователями из Microsoft вместе с научной работой, под лицензией MIT. Выглядит как proof-of-concept, не факт что его можно применять в практических задачах сразу и из коробки, но для экспериментов самое оно. И для идей и вдохновения
- Chat2DB [8] открытый код (community edition) и сервис по управлению базами данных с помощью ИИ. Всё самое вкусное вынесли в коммерческие версии, но посмотреть стоит в любом случае.
Ссылки:
[1] https://perforator.tech
[2] https://ebpf.io
[3] https://github.com/assafelovic/gpt-researcher
[4] https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1
[5] https://www.datalumos.org
[6] https://www.openicpsr.org/openicpsr/
[7] https://github.com/microsoft/data-formulator
[8] https://chat2db.ai
#opensource #datatools #opendata #ai
ebpf.io
eBPF - Introduction, Tutorials & Community Resources
eBPF is a revolutionary technology that can run sandboxed programs in the Linux kernel without changing kernel source code or loading a kernel module.
В рубрике интересных открытых данных проект The Data Liberation Project [1] создан командой НКО MuckRock [2] в США и содержит наборы данных которые они каким-либо способом получили, очистили, переформатировали и подготовили. В основном это данные интересные для журналистов и на которые благодаря их работе можно сослаться. Например, там есть датасет по использованию воды [3] из реестра USGS или база жалоб заключенных [4].
Значительная часть данных получена через FOI запросы к органами власти, а далее преобразована ими в форматы SQlite, превращено в веб сайты и тд.
Можно было бы назвать их каталогом данных, но скорее просто список. Значительную часть результатов они публикуют просто файлами на Google Drive. С другой стороны они готовят весьма осмысленную документацию на наборы данных [5].
Я вспомнил про него ещё и потому что увидел что MuckRock хостят онлайн мероприятие посвящённое архивации федеральных данных в США [6] с участием главы Интернет Архива, Марка Грехэма и Джека Кушмана из Harvard Law School Library Innovation Lab. Первые ведут проект End of term с архивом материалов прошлой администрации, а вторые сделали полный слепок данных data.gov на 16TB.
Ссылки:
[1] https://www.data-liberation-project.org
[2] https://www.muckrock.com
[3] https://www.data-liberation-project.org/datasets/usgs-water-use-inventory/
[4] https://www.data-liberation-project.org/datasets/federal-inmate-complaints/
[5] https://docs.google.com/document/d/1vTuyUFNqS9tex4_s4PgmhF8RTvTb-uFMN5ElDjjVHTM/edit?tab=t.0#heading=h.iw2h1hjfzqu0
[6] https://www.muckrock.com/news/archives/2025/feb/10/federal-data-is-disappearing-on-thursday-meet-the-teams-working-to-rescue-it-and-learn-how-you-can-help/
#opendata #opengov #digitalpreservation
Значительная часть данных получена через FOI запросы к органами власти, а далее преобразована ими в форматы SQlite, превращено в веб сайты и тд.
Можно было бы назвать их каталогом данных, но скорее просто список. Значительную часть результатов они публикуют просто файлами на Google Drive. С другой стороны они готовят весьма осмысленную документацию на наборы данных [5].
Я вспомнил про него ещё и потому что увидел что MuckRock хостят онлайн мероприятие посвящённое архивации федеральных данных в США [6] с участием главы Интернет Архива, Марка Грехэма и Джека Кушмана из Harvard Law School Library Innovation Lab. Первые ведут проект End of term с архивом материалов прошлой администрации, а вторые сделали полный слепок данных data.gov на 16TB.
Ссылки:
[1] https://www.data-liberation-project.org
[2] https://www.muckrock.com
[3] https://www.data-liberation-project.org/datasets/usgs-water-use-inventory/
[4] https://www.data-liberation-project.org/datasets/federal-inmate-complaints/
[5] https://docs.google.com/document/d/1vTuyUFNqS9tex4_s4PgmhF8RTvTb-uFMN5ElDjjVHTM/edit?tab=t.0#heading=h.iw2h1hjfzqu0
[6] https://www.muckrock.com/news/archives/2025/feb/10/federal-data-is-disappearing-on-thursday-meet-the-teams-working-to-rescue-it-and-learn-how-you-can-help/
#opendata #opengov #digitalpreservation
Написал в рассылку про инструменты веб архивации и об отличиях инструментов из экосистемы WARC используемые в веб архивах и современных краулеров собирающих контент с веб сайтов.
#digitalpreservation #webarchives #WARC #crawling
#digitalpreservation #webarchives #WARC #crawling
Ivan’s Begtin Newsletter on digital, open and preserved government
Веб-архивация и её ограничения
"Достоинство архивов в том, что они приводят нас в соприкосновение с чистой историчностью" - Клод Леви-Строс
Data Rescue Project [1] - ещё один проект в США по архивации госданных. Делается группой исследовательских организаций, сохраняют данные сами и систематизируют сохранённое другими.
В общедоступном каталоге сейчас 87 источников данных [2]
Что характерно технически используют для работы Baserow [3] - open source аналог Airtable. У нас в рамках ruarxive.org всё собрано было в Airtable что уже неудобно и, возможно, стоит смигрировать в Baserow или Mathesar.
В случае Data Rescue Project можно ещё обратить внимание на объёмы, сейчас у них сохранено порядка 5 ТБ, что с одной стороны, не так уж много, а с другой, это же не архивы сайтов, а архив именно данных.
Ссылки:
[1] https://www.datarescueproject.org/
[2] https://baserow.datarescueproject.org/public/grid/Nt_M6errAkVRIc3NZmdM8wcl74n9tFKaDLrr831kIn4
[3] https://baserow.io/
#opendata #webarchives #digitalpreservation
В общедоступном каталоге сейчас 87 источников данных [2]
Что характерно технически используют для работы Baserow [3] - open source аналог Airtable. У нас в рамках ruarxive.org всё собрано было в Airtable что уже неудобно и, возможно, стоит смигрировать в Baserow или Mathesar.
В случае Data Rescue Project можно ещё обратить внимание на объёмы, сейчас у них сохранено порядка 5 ТБ, что с одной стороны, не так уж много, а с другой, это же не архивы сайтов, а архив именно данных.
Ссылки:
[1] https://www.datarescueproject.org/
[2] https://baserow.datarescueproject.org/public/grid/Nt_M6errAkVRIc3NZmdM8wcl74n9tFKaDLrr831kIn4
[3] https://baserow.io/
#opendata #webarchives #digitalpreservation