Ivan Begtin
8.01K subscribers
1.94K photos
3 videos
101 files
4.64K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and other gov related and tech stuff.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Secure contacts [email protected]
加入频道
В рубрике как это работает у них Repozytorium Standardów Informacyjnych [1] репозиторий стандартов для информационного обмена созданный и поддерживаемый статистической службой Польши.

В каком-то смысле это уникальный проект. В первую очередь - это реестр типов данных и их описаний которые хранятся в государственных информационных системах. Это и описания физического лица, и то какие метаданные о физ лице собираются и описания организаций и геообъектов и ещё много чего.

Но не менее важно что в систему входит реестр всех информационных систем [2], а это 614 штук и схемы данных в этих информационных системах привязанные к реестру типов данных.

Самый интересный вопрос в том причём же тут статслужба? И вот эта логика как раз очень понятна. Статслуба Польши кроме базовой статистики производит ещё и очень много экспериментальной статистики, созданной на основе одной или нескольких ведомственных информационных систем. Например, это портал транспортной статистики TranStat [3]


Ссылки:
[1] https://rsi.stat.gov.pl
[2] https://rsi.stat.gov.pl/#/rsisystemy
[3] https://transtat.stat.gov.pl

#opendata #data #statistics #poland
Уникальная фича Dateno [1] - это сужение поиска датасетов до субрегионального уровня, городов и регионов стран. Например, можно в фасете SubRegion где для многих стран можно найти данные сразу в региональном разрезе. Не просто по Франции, к примеру, а сразу по Парижу. В классическом поиске для этого обычно используют комбинации слов, вроде "COVID Paris" или "COVID Berlin", но на порталах данных часто неочевидно к какому города или регионы они относятся.

Такой фасет возможен самым банальным образом, автоматизированной и ручной разметкой каталогов в реестре каталогов Dateno [2]. В файлах YAML описания каталогов регионы прописываются явным образом в блоге coverage и построено это на основе стандарта ISO 3166-2, к примеру, код Берлина DE-BE.

Указание регионов есть только для каталогов которые отмечены как Regional government и Local government и тех по которым тип владельца ещё неизвестен (Unknown). Таких каталогов более 7989 и из них 1041 имеет привязку к subregion.

Это самый простой и очевидный способ дать геопривязку к данным. Аннотирование каталогов данных действенная штука для таких задач. Более сложный сценарий когда региональных каталогов мало, всё централизовано, а на центральном портале региональные данные есть. Что делать в этом случае? Тут есть два решения/подхода.

1-й - это машинное обучение и идентификация геопривязки наборов данных по ключевым словам в заголовке и в описании. Тут, правда, будет много ошибок потому что, к примеру, есть страна Armenia, а есть муниципалитет Armenia в Колумбии.

2-й - это ручное или автоматическое аннотирование публикаторов данных. На порталах данных, как правило, есть инфа о том кто данные опубликовал и по ней можно идентифицировать регион.

Это будет работать на некоторых крупных порталах данных вроде США с data.gov, но даже там на национальный уровень выводится относительно немного данных и нужен хороший матчер названий организаций и их территорий.

Эта фича ещё будет развиваться, пока же можно искать по тем данным которые уже размечены и их число будет пополнятся с каждым проходом краулера и обновлением реестра каталогов данных.

Ссылки:
[1] https://dateno.io
[2] https://dateno.io/registry

#opendata #datacatalogs #datasets #dateno
Полезное чтение про данные, технологии и не только:
- Everyone Has A Price — And Corporations Know Yours [1] о нарастающем тренде персонализированных цен в примерах. О том что накоплений данных корпорациями приводит к тому что они рано или поздно научатся контролировать то сколько денег остаётся у тебя в карманах. Статья не за пэйволом, но требует регистрации.
- Mapping the Landscape of AI-Powered Nonprofits [2] об отношении НКО и AI, примеры некоммерческого применения и НКОшек работающих с AI, а также областях применения в некоммерческом секторе
- Digital Ethology [3] книга о человеческом поведении в геопространственном контексте. Ещё не читал, но планирую. Судя по содержанию там немало про цифровые следы в пространстве что мы оставляем.
- Diversity in Artificial Intelligence Conferences [4] статья о том что в конференциях по ИИ низкий уровень diversity (разнообразия), например, мало женщин. И низкое разнообразие по странам: все из США, Европы и Китая. Почти все. Казалось бы на эти вопросы есть очевидные ответы, но тут целая научная работа.
- The Great Scrape: The Clash Between Scraping and Privacy [5] нарастающий конфликт между теми кто "обдирает" (scrape) сайты и теми кто заботится о приватности. И ранее было спорной темой, а сейчас становится особенно актуально в контексте обучения ИИ.
- Automated warfare: irresponsible even without killer robots [6] о том как Израиль применяет ИИ для идентификации зданий объектов для атаки и "социальный скоринг" палестинцев на вероятность что они боевики Хамас. Упоминаются две системы Gospel [7] и Lavander [8]

Ссылки:
[1] https://www.levernews.com/everyone-has-a-price-and-corporations-know-yours/
[2] https://ssir.org/articles/entry/ai-powered-nonprofits-landscape
[3] https://mitpress.mit.edu/9780262548137/digital-ethology/
[4] https://publications.jrc.ec.europa.eu/repository/handle/JRC137550
[5] https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4884485
[6] https://r.algorithmwatch.org/nl3/lm8uSbreEO9yUU55aO0flA
[7] https://www.972mag.com/mass-assassination-factory-israel-calculated-bombing-gaza/
[8] https://www.972mag.com/lavender-ai-israeli-army-gaza/

#data #readings #ai
Забавная утилита для командной строки ai-renamer [1] переименует фотографии в зависимости от их содержимого. Бывает полезно, но... очень многие хранят десятки фотографий одного и того же места или объекта и потом выбирают лучшую фотографию из многих.

Очень полезным инструментом был бы такой локальный органайзер который сканировал фото по наличию того что на них есть и давал бы возможность фасетного поиска с новыми тегами и атрибутами. Кстати и для корпоративных банков документов такое было бы полезно.


Ссылки:
[1] https://github.com/ozgrozer/ai-renamer

#ai #commandline #tools
По поводу глобального синего экрана смерти из-за ошибки в антивирусе CrowdStrike [1] который поразил авиакомпании и тысячи критических инфраструктурных и просто компаний.

Ключевое тут - это хрупкость человечества и расширение списка мест этой хрупкости.

Но что пока радует так то что рукожопы пока лидируют в угрозе человечеству далеко обгоняя хакеров.

Ссылки:
[1] https://www.forbes.com/sites/kateoflahertyuk/2024/07/19/crowdstrike-windows-outage-what-happened-and-what-to-do-next/

#it #tech #thoughts
Рейтинг открытости данных в Германии Open Data Ranking от OKF Germany [1].

На первом месте регион Schleswig-Holstein, на последнем Saxony-Anhalt, а ключевые оценки по юридической обязательности публикации данных.

Если посмотреть на рейтинг то кажется что всё не так уж хорошо, хотя, ИМХО, они игнорируют порталы геоданных которых в Германии немало, особенно на региональном и городском уровне.

В реестре Dateno сейчас 378 каталогов данных в Германии [2] из которых 211 - это геопорталы.

При этом почти наверняка в каталоге собрано далеко не всё, как минимум у каждой из земель в Германии есть собственный статистический офис и много муниципальных порталов данных.

Поэтому этот рейтинг скорее про качество госполитики чем про доступность данных, хотя авторы и пытаются это смешать и добавили туда оценку по доступности документов парламентов. Что, несомненно, важно, хотя и методически странно. Тогда надо бы разделять на меньшее число крупных блоков: законодательство, технологии, прозрачности власти.

В любом случае рейтинг полезен и любопытен.

Ссылки:
[1] https://opendataranking.de
[2] https://dateno.io/registry/country/DE

#opendata #data #germany #ratings
Google анонсировали закрытие сервиса сокращения ссылок goo.gl [1] после того как уже более 5 лет с его помощью нельзя было создавать ссылки, а также были отключены функции аналитики и управления.

Окончательно сервис будет закрыт 25 августа 2025 когда перестанут работать ссылки, а с 23 августа 2024 года будет выводится предупреждение при их открытии.

Чтобы будет с этими ссылками? Команда Archive Team ведёт архивацию всех коротких ссылок в проекте URLTeam [2]. Уже просканировано 38.6 миллиардов ссылок и обнаружены активными 7 миллиардов ссылок.

P.S. ArchiveTeam это крупнейший глобальный краудсорсинговый проект по веб архивации, поучаствовать в нём можно с помощью ПО Warrior которое выполняет задачи по сбору контента синхронизируясь с трекером задач [3].

Ссылки:
[1] https://9to5google.com/2024/07/18/googl-links/
[2] https://tracker.archiveteam.org:1338/status
[3] https://wiki.archiveteam.org/index.php/ArchiveTeam_Warrior

#digitalpreservation #webarchive #google #crowdsourcing #urlshortener
Зима близко, "зима данных" статья
Are we entering a Data Winter? On the urgent need to preserve data access for the public interest [1] от Stefaan Verhulst
и исследование Consent in Crisis: The Rapid Decline of the AI Data Commons [2] от учёных из MIT.

И там, и там на тему того что данные которые используются для обучения ИИ стремительно исчезают из открытого доступа.

В том числе
5% всех данных и 25% данных высокого качества для обучения ИИ (C4, RefinedWeb, Dolma) теперь ограничены в доступе
45% данных в наборе C4 ограничены условиями сервиса
Многие контентные сайты теперь устанавливают пэйволы или меняют условия использования.
Массово блокируются краулеры от таких компаний как OpenAI, Anthropic, и Google.
Ряд компаний начинают требовать плату за доступ к данным (напр. Reddit, Inc., StackOverflow).
Активно предпринимаются юридические действия такие как иск The New York Times’ против OpenAI и Microsoft.

Список можно продолжать, фрагментация Интернета может стремительно нарастать уже в ближайшие месяцы. Как минимум многие владельцы крупных сайтов могут пойти на дальнейшее исключение их из поисковых систем, только чтобы их контент не был бы заменён ИИ который вообще трафика на их сайты не принесёт.

Отдельная история в этом всём в том что будет с открытостью данных. Пока ещё базовая концепция открытости не меняется, данные созданные на общественные средства должны быть общедоступны. Но соблазн у многих правительств по ограничению "чужих" ИИ к доступу к чувствительным данным может только нарастать.

Ссылки:
[1] https://policylabs.frontiersin.org/content/commentary-are-we-entering-a-data-winter
[2] https://www.dataprovenance.org/consent-in-crisis-paper

#opendata #data #ai #readings
Полезное чтение про данные, технологии и не только:
- A Quick Introduction to JavaScript Stored Programs in MySQL [1] в блоге Oracle MySQL о том чтобы использовать программы на Javascript внутри СУБД. Признаться честно я к этой практике отношусь с глубоким осуждением, особенно в части аргументации что миллионы разработчиков используют Javascript так давайте запихнём его ещё куда-нибудь. Тем не менее тоже тренд и тоже понятный, хотя и запоздавший лет на 10-15.
- ColPali: Efficient Document Retrieval with Vision Language Models [2] про распознавание текстов и Vision LLMs. Вот это перспективная тема которая может подвинуть текущих лидеров OCR.
- A Crash Course on Relational Database Design [3] хорошая инфографика для совсем начинающих работающих с базами данных. Как и вся наглядная инфографика от ByteByteGo
- Assisting in Writing Wikipedia-like Articles From Scratch with Large Language Models [4] проект STORM родом из Stanford который позволяет писать длинные вики статьи с помощью LLM на произвольные неизвестные темы. Выглядит как инструмент который может, как сильно дополнить Википедию, так и создать реального её конкурента с нуля, так и ещё много для чего. Когда уже сделают LLM для быстрой генерации корпоративной документации на ИТ продукты или доков для open source?

Ссылки:
[1] https://blogs.oracle.com/mysql/post/a-quick-introduction-to-javascript-stored-programs-in-mysql
[2] https://huggingface.co/blog/manu/colpali
[3] https://blog.bytebytego.com/p/a-crash-course-on-relational-database
[4] https://storm-project.stanford.edu/research/storm/

#ai #readings #sql #databases #ocr #data
Большой пласт открытых, но скрытых данных скрывается в многочисленных сайтах ArcGIS в облаке ESRI. Они все находятся в виде поддоменов у maps.arcgis.com или в виде доменов прилинкованных к облачному сервису. Например, по Армении есть сайт GIS 4 Armenia [1] работающий на этом сервисе и в его основе сервис сервера ArcGIS доступный по прямому адресу [2].

И таких сайтов десятки тысяч, они существуют параллельно сервисам ESRI по публикации открытых данных [3].

Среди этих сервисов есть и некоторые российские, например, портал геоданных Тверского госуниверситета [4] и его геоданные [5].

Это всё можно отнести к категории "скрытые данные". На этих сайтах ArcGIS не афишируется что можно выкачать все слои доступные на картах, но, тем не менее, это возможно.

Ссылки:
[1] https://armenia.maps.arcgis.com
[2] https://services4.arcgis.com/XZEtqni2CM1tP1ZM/ArcGIS/rest/services
[3] https://hub.arcgis.com
[4] https://gymnasiumtsu.maps.arcgis.com
[5] https://services6.arcgis.com/eBtYRazoKYOLGPmU/arcgis/rest/services

#opendata #datasets #geodata #arcgis #maps #geoportals
В рубрике как это устроено у них раскрытие данных Европейского центрального банка (ECB) на ECB Data portal [1]. Главная особенность именно портала данных ECB в том что они публикуются, одновременно, для аналитиков не умеющих работать с техническими инструментами, тех кто умеет работать с API и тех кто оперирует большими данными.

Все индикаторы ECB собраны в 108 наборов данных по группам [2] скачав файлы которых можно сразу загрузить в свою базу данных и сразу работать с их значениями. Это то что называют bulk download.

Одновременно с этим каждый индикатор доступен в визуальной форме [3] и, наконец, у всего этого каталога данных есть API по стандарту SDMX 2.1 используемого для раскрытия статистики. [4]

В целом это один из наиболее методологически проработанных порталов публикации статистики поскольку современные стат. порталы удобны когда учитывают интересы многих типов пользователей.

Всем исследователям и аналитикам кто работает с данными нужны API и возможность выгрузки данных целиком.

А всем тем кто ссылается на конкретный индикатор, в статье или в научной работе - нужна постоянная ссылка на конкретный индикатор.


Ссылки:
[1] https://data.ecb.europa.eu
[2] https://data.ecb.europa.eu/data/datasets
[3] https://data.ecb.europa.eu/data/datasets/AME/AME.A.DNK.1.0.0.0.OVGD
[4] https://data.ecb.europa.eu/help/api/overview

#opendata #data #europe #centralbank #ecb #datasets #api #sdmx
Geoexplorer Berlin [1] сервис навигации по геоданным Берлина, интерфейс над их каталогом данных на базе Geonetwork.

Отличительная особенность в интеграции ChatGPT в интерфейс и это выражается в генерации описания того зачем нужен конкретный датасет, дословно: "На какие вопросы отвечает этот датасет?" и в автодокументировании данных. А также в поиске по данным на естественном языке. Немецком языке, конечно же.

Данных там немного, но функции любопытные. Есть что изучить и применить.

Разработано в Technologie Stiftung Berlin [2], открытый код под лицензией MIT [3]

Ссылки:
[1] https://geoexplorer.odis-berlin.de/
[2] https://www.technologiestiftung-berlin.de/
[3] https://github.com/technologiestiftung/odis-geoexplorer

#opendata #geodata #datasets #ai #opensource #germany #berlin