В каталог DataCrafter'а добавлен открытый набор данных Реестр обязательных требований для организаций в городе Москве [1] полученный с сайта Открытый контроль (knd.mos.ru). Набор данных включает 87 тысяч записей, общим объёмом 470 МБ в формате JSONL и в 20 МБ в сжатом виде. Данные содержат обязательные требования предъявляемые организациям в зависимости от вида их деятельности.
Данные доступны через:
- в виде пакета данных (ZIP архив)
- в виде JSON lines файла экспорта
- через API платформы
Набор данных можно использовать, например, для создания сервиса определения перечня требований к организации по виду деятельности. На его основе можно создать специальный телеграм бот, мобильное приложение или веб интерфейс отличный от того что уже реализовано на портале Открытый контроль.
Ссылки:
[1] https://data.apicrafter.ru/packages/mosknd
#opendata #moscow #data #knd
Данные доступны через:
- в виде пакета данных (ZIP архив)
- в виде JSON lines файла экспорта
- через API платформы
Набор данных можно использовать, например, для создания сервиса определения перечня требований к организации по виду деятельности. На его основе можно создать специальный телеграм бот, мобильное приложение или веб интерфейс отличный от того что уже реализовано на портале Открытый контроль.
Ссылки:
[1] https://data.apicrafter.ru/packages/mosknd
#opendata #moscow #data #knd
DataCrafter
Реестр обязательных требований для организаций в городе Москве
Реестр обязательных требований для организаций в городе Москве с сайта Открытый контроль (knd.mos.ru)
Forwarded from Ivan Begtin (Ivan Begtin)
Масштабное обновление алгоритмов классификации данных в DataCrafter'е. Теперь из 76500 полей наборов данных классифицированы 19 501 поле, это около 25,5%. Учитывая что многие поля надо отмечать как "неклассифицируемые" потому что они содержат только расчёт численные данные, то 25,5% от всех полей это очень много, можно сказать рекорд!
Классификация данных - это процесс при котором определяется природа данных содержащихся в таблицах/файлах/наборах данных. Например, идентификация кодов ИНН/ОГРН/КПП организация, ФИО / Имён / Отчеств / Фамилий физических лиц и ещё многое другое.
При этом обновлении были добавлены новые идентификаторы и правила их распознавания:
- ruscity - Российский город
- rusdayofweek - День недели на русском языке (понедельник, вторник и т.д.)
- runpa - нормативно-правовые и распорядительные документы. Законы, постановления, распоряжения и приказы
- mimetype - типы MIME, как правило ассоциированные с файлами
- filename - название файла
- rusworkposition - должности. Например: ректор,директор,и.о. директора и т.д.
- timerange - временные промежутки. Например: 10:00-12:00 или 21:10-21:30
А также многие другие. Сейчас в DataCrafter внесено 90 классов данных [1] для идентификации которых используется 134 правила идентифицирующих данные и 304 правила идентифицирующих дату/время. Дата и время идентифицируются отдельно поскольку ещё в 2017 году я заопенсорсил движок qddate [2] определяющая даты в 348 шаблонах и на 9 языках. Движок, кстати, делался для библиотеки newsworker [3] по извлечению новостей из сайтов не отдающих RSS ленты, на основе шаблонов текстов, в основе которых даты. Эту библиотеку я тогда же заопенсорсил и слегка подзабросил, но она всё ещё вполне работает и актуальна.
Чтобы достичь этого результата внутренний движок классификации данных был полностью переписан. Большая часть правил теперь описывается в конфигурационных настраиваемых файлах YAML. При применении правил они могут фильтроваться по контексту, по языку и по точности. Кроме коллекий в MongoDB теперь поддерживаются файлы CSV и JSONl. Через некоторое время рабочая версия классификатора появится в виде страницы в интернете и телеграм бота (телеграм бот уже тестируется).
Сейчас 72 из 135 правил написаны под русский язык и Россию. Они учитывают, или принятые в России классификаторы, или русскоязычное кодирование информации. Следующий шаг после открытия версии классификатора для публичного тестирования - это поддержка классификации данных происходящих из других стран.
Ссылки:
[1] https://data.apicrafter.ru/class
[2] https://github.com/ivbeg/qddate
[3] https://github.com/ivbeg/newsworker
#opendata #data #datasets #datacrafter #apicrafter #dataclassification
Классификация данных - это процесс при котором определяется природа данных содержащихся в таблицах/файлах/наборах данных. Например, идентификация кодов ИНН/ОГРН/КПП организация, ФИО / Имён / Отчеств / Фамилий физических лиц и ещё многое другое.
При этом обновлении были добавлены новые идентификаторы и правила их распознавания:
- ruscity - Российский город
- rusdayofweek - День недели на русском языке (понедельник, вторник и т.д.)
- runpa - нормативно-правовые и распорядительные документы. Законы, постановления, распоряжения и приказы
- mimetype - типы MIME, как правило ассоциированные с файлами
- filename - название файла
- rusworkposition - должности. Например: ректор,директор,и.о. директора и т.д.
- timerange - временные промежутки. Например: 10:00-12:00 или 21:10-21:30
А также многие другие. Сейчас в DataCrafter внесено 90 классов данных [1] для идентификации которых используется 134 правила идентифицирующих данные и 304 правила идентифицирующих дату/время. Дата и время идентифицируются отдельно поскольку ещё в 2017 году я заопенсорсил движок qddate [2] определяющая даты в 348 шаблонах и на 9 языках. Движок, кстати, делался для библиотеки newsworker [3] по извлечению новостей из сайтов не отдающих RSS ленты, на основе шаблонов текстов, в основе которых даты. Эту библиотеку я тогда же заопенсорсил и слегка подзабросил, но она всё ещё вполне работает и актуальна.
Чтобы достичь этого результата внутренний движок классификации данных был полностью переписан. Большая часть правил теперь описывается в конфигурационных настраиваемых файлах YAML. При применении правил они могут фильтроваться по контексту, по языку и по точности. Кроме коллекий в MongoDB теперь поддерживаются файлы CSV и JSONl. Через некоторое время рабочая версия классификатора появится в виде страницы в интернете и телеграм бота (телеграм бот уже тестируется).
Сейчас 72 из 135 правил написаны под русский язык и Россию. Они учитывают, или принятые в России классификаторы, или русскоязычное кодирование информации. Следующий шаг после открытия версии классификатора для публичного тестирования - это поддержка классификации данных происходящих из других стран.
Ссылки:
[1] https://data.apicrafter.ru/class
[2] https://github.com/ivbeg/qddate
[3] https://github.com/ivbeg/newsworker
#opendata #data #datasets #datacrafter #apicrafter #dataclassification
DataCrafter
Российский город
Название российского города в написании на русском языке.