ЮТИ 🇷🇺
1.52K subscribers
1.02K photos
122 videos
6 files
241 links
Фонд «Юные Техники и Изобретатели»: новости науки техники, инновации и прорывные проекты России, изобретения и проекты школьников и студентов, патентные заявки, истории успеха, конкурсы

https://юные-техники.рф

Сотрудничество
Елена Александровна: +7985
加入频道
Продолжая нашу рубрику #технокомменты, мы решили обсудить перспективу использования экологически чистого авиационного топлива (SAF) 🌱

Недавно Airbus, Rolls-Royce, Немецкий аэрокосмический центр и производитель SAF Neste провели исследование, в котором измерили влияние SAF на выбросы Airbus A350 с двигателем Rolls-Royce. Выяснилось, что в результате использования SAF произошло снижение количества выбросов не только углекислого газа, но и частиц сажи, а также уменьшилось образование кристаллов льда.

Но насколько вообще возможен переход на экологически чистое авиационное топливо в ближайшей перспективе? Своим мнением поделился Александр Чуднов, начальник НИО общего проектирования, заместитель главного конструктора #КБ_SJ:

🗣️🗣️🗣️🗣️🗣️

◾️Считаю, что скорая декарбонизация воздушного транспорта маловероятна, так как для этого потребуется «добывать» столько же экологически чистого топлива, сколько сейчас производится обыкновенного.

◾️Альтернативой SAF может быть применение в качестве топлива жидкого водорода, однако это потребует весьма серьезного изменения облика самолетов, например, установку топливных баков больших размеров. Также необходимы разработки надежных и безопасных технологий работы с водородом.

◾️Сложно оценить, насколько важна проблема авиационных выбросов, так как для этого необходимо точно понимать, какая доля всех вредных выбросов приходится на авиацию. В целом, для российский авиационной индустрии на данный момент существуют более актуальные задачи.

◾️С SAF можно обращаться так же, как с традиционным авиатопливом, поэтому никаких модификаций в структуру самолета вносить не требуется. Если в перспективе у авиакомпаний, эксплуатирующих SJ-100, появится интерес к переходу на SAF, они смогут это сделать.

А как считают наши подписчики? Согласны?

© Заметки авиастроителей
Please open Telegram to view this post
VIEW IN TELEGRAM
Конец недели – самое время для дискуссий в рамках нашей уникальной рубрики #технокомменты 🌊

Сегодня мы обсудим работу инженеров ЦАГИ по созданию крыла для самолетов с подвижной обшивкой. Инновация заключается в специальном механизме, который позволяет поверхности перемещаться вокруг его силовых конструкций, но при этом оставаться гладким, чтобы сохранять высокие аэродинамические свойства.
Решение этой задачи обеспечивается с помощью механических цепей в крыле, которые состоят из соединенных друг с другом рычажных механизмов. Они связаны с обшивкой специальными спицами. При изменении геометрии любого звена остальные изменяются таким же образом.

Разобраться в том, насколько такая технология перспективна для авиастроения, нам помог Андрей Бабулин, начальник НИО – заместитель главного конструктора по аэродинамике #КБ_SJ:

🗣️🗣️🗣️🗣️🗣️

◾️Сейчас «классическим» средством изменения кривизны сечений крыла в зависимости от режима полета стали органы взлетно-посадочной механизации задней кромки крыла (щитки и закрылки разных типов), передней кромки крыла (отклоняемые носки, предкрылки и щитки разных типов) и органы управления (элероны, флапероны, элевоны). Однако упомянутые органы механизации и управления обычно характеризуются или наличием щелей между элементами (щелевые предкрылки, закрылки) или относительно резким изменением внешних обводов.

◾️Эффективность использования взлетно-посадочной механизации «классической» конструкции для управления распределением нагрузки по крылу в крейсерском полете на магистральных самолетах (так называемая адаптивная механизация крыла – внедрено на В787 и А350) ограничивается кинематикой выпуска-уборки закрылков. Поэтому конструкторы пытаются решить задачу создания механизации крыла и органов управления, которые бы отклонялись без образования щелей, сохраняя плавный контур внешних обводов.

◾️Известны примеры таких работ – на результаты некоторых из них оформлены патенты, некоторые дошли до создания летных демонстраторов, например, AFTI (демонстратор на базе F-111), AAW (демонстратор на базе F/A-18A), ACTE (демонстратор на базе Gulfstream III). Все эти варианты реализации плавного отклонения элементов крыла, как и предложенный учеными ЦАГИ, характеризуются наличием многозвенных кинематических схем. Основная сложность практической реализации подобного рода конструкций заключается в обеспечении эксплуатационной технологичности и весовой эффективности, а также в решении задач компоновки с конструкцией других агрегатов и систем.

◾️Поэтому логичен следующий порядок освоения технологии: отработка кинематики на стендах, анализ аэродинамической эффективности на моделях в аэродинамических трубах, отработка реализации технологии на летном беспилотном демонстраторе. После прохождения этих стадий можно будет оценить готовность технологии к возможной реализации в составе летательных аппаратов того или иного назначения. В качестве первого этапа внедрения такого рода технологии видится вариант гибридной реализации – «классические» элементы механизации крыла, но с возможностью ограниченного плавного изменения их внешних обводов.

А как считают наши подписчики? Согласны?

© Заметки авиастроителей
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM