Question 25 (Advanced - CNN Implementation in Keras):
When building a CNN for image classification in Keras, what is the purpose of Global Average Pooling 2D as the final layer before classification?
A) Reduces spatial dimensions to 1x1 while preserving channel depth
B) Increases receptive field for better feature extraction
C) Performs pixel-wise normalization
D) Adds non-linearity before dense layers
#Python #Keras #CNN #DeepLearning
✅ By: https://yangx.top/DataScienceQ
When building a CNN for image classification in Keras, what is the purpose of Global Average Pooling 2D as the final layer before classification?
A) Reduces spatial dimensions to 1x1 while preserving channel depth
B) Increases receptive field for better feature extraction
C) Performs pixel-wise normalization
D) Adds non-linearity before dense layers
#Python #Keras #CNN #DeepLearning
✅ By: https://yangx.top/DataScienceQ
❤2
Question 26 (Intermediate - Edge Detection):
In Python's OpenCV, which of these edge detection techniques preserves edge directionality while reducing noise?
A)
B)
C)
D)
#Python #OpenCV #EdgeDetection #ComputerVision
✅ By: https://yangx.top/DataScienceQ
In Python's OpenCV, which of these edge detection techniques preserves edge directionality while reducing noise?
A)
cv2.Laplacian()
B)
cv2.Canny()
C)
cv2.Sobel()
with dx=1, dy=1 D)
cv2.blur()
+ thresholding #Python #OpenCV #EdgeDetection #ComputerVision
✅ By: https://yangx.top/DataScienceQ
Question 27 (Intermediate - List Operations):
What is the time complexity of the
A) O(1) - Constant time (like appending)
B) O(n) - Linear time (shifts all elements)
C) O(log n) - Logarithmic time (binary search)
D) O(n²) - Quadratic time (worst-case)
#Python #DataStructures #TimeComplexity #Lists
✅ By: https://yangx.top/DataScienceQ
What is the time complexity of the
list.insert(0, item)
operation in Python, and why? A) O(1) - Constant time (like appending)
B) O(n) - Linear time (shifts all elements)
C) O(log n) - Logarithmic time (binary search)
D) O(n²) - Quadratic time (worst-case)
#Python #DataStructures #TimeComplexity #Lists
✅ By: https://yangx.top/DataScienceQ
Question 30 (Intermediate - PyTorch):
What is the purpose of
A) Disables model training
B) Speeds up computations by disabling gradient tracking
C) Forces GPU memory cleanup
D) Enables distributed training
#Python #PyTorch #DeepLearning #NeuralNetworks
✅ By: https://yangx.top/DataScienceQ
What is the purpose of
torch.no_grad()
context manager in PyTorch? A) Disables model training
B) Speeds up computations by disabling gradient tracking
C) Forces GPU memory cleanup
D) Enables distributed training
#Python #PyTorch #DeepLearning #NeuralNetworks
✅ By: https://yangx.top/DataScienceQ
🔥1
Question 31 (Intermediate - Django ORM):
When using Django ORM's
A)
B) Both methods generate exactly one SQL query
C)
D)
#Python #Django #ORM #Database
✅ By: https://yangx.top/DataScienceQ
When using Django ORM's
select_related()
and prefetch_related()
for query optimization, which statement is correct? A)
select_related
uses JOINs (1 SQL query) while prefetch_related
uses 2+ queries B) Both methods generate exactly one SQL query
C)
prefetch_related
works only with ForeignKey relationships D)
select_related
is better for many-to-many relationships #Python #Django #ORM #Database
✅ By: https://yangx.top/DataScienceQ
❤1🔥1
Question 32 (Advanced - NLP & RNNs):
What is the key limitation of vanilla RNNs for NLP tasks that led to the development of LSTMs and GRUs?
A) Vanishing gradients in long sequences
B) High GPU memory usage
C) Inability to handle embeddings
D) Single-direction processing only
#Python #NLP #RNN #DeepLearning
✅ By: https://yangx.top/DataScienceQ
What is the key limitation of vanilla RNNs for NLP tasks that led to the development of LSTMs and GRUs?
A) Vanishing gradients in long sequences
B) High GPU memory usage
C) Inability to handle embeddings
D) Single-direction processing only
#Python #NLP #RNN #DeepLearning
✅ By: https://yangx.top/DataScienceQ
Telegram
Python Data Science Jobs & Interviews
Your go-to hub for Python and Data Science—featuring questions, answers, quizzes, and interview tips to sharpen your skills and boost your career in the data-driven world.
Admin: @Hussein_Sheikho
Admin: @Hussein_Sheikho
❤3
🚀 Comprehensive Guide: How to Prepare for an Image Processing Job Interview – 500 Most Common Interview Questions
Let's start: https://hackmd.io/@husseinsheikho/IP
#ImageProcessing #ComputerVision #OpenCV #Python #InterviewPrep #DigitalImageProcessing #MachineLearning #AI #SignalProcessing #ComputerGraphics
Let's start: https://hackmd.io/@husseinsheikho/IP
#ImageProcessing #ComputerVision #OpenCV #Python #InterviewPrep #DigitalImageProcessing #MachineLearning #AI #SignalProcessing #ComputerGraphics
✉️ Our Telegram channels: https://yangx.top/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3