🚀 Добро пожаловать в AI Business Pulse – ваш источник инсайтов об ИИ для бизнеса!
📌 Что вас ждет здесь?
Каждый день искусственный интеллект меняет правила игры в бизнесе: новые инструменты, алгоритмы, подходы к маркетингу, аналитике и автоматизации. Мы собрали всё самое важное, от новостей до готовых решений, чтобы вы не тратили время на поиск — только полезные инсайты и практический контент.
💡 Формат канала:
🔹 Форсайты и сценарии AI – цифровизации.
🔹 Ключевые новости AI – свежие события и тренды, которые реально влияют на рынок.
🔹 Готовые решения и Mega Prompt – проверенные шаблоны для маркетинга, продаж, аналитики и автоматизации.
🔹 Разборы кейсов – как компании внедряют нейросети и получают реальную выгоду.
🔹 Диалоги с AI-экспертами – моделируем обсуждения бизнес-тем с ИИ (например, «Что бы сказал Аристотель о будущем предпринимательства?»).
🔹 Видео и подкасты – короткие форматы для быстрого погружения.
🔥 Чем это полезно?
→ Если вы фаундер, здесь найдете стратегии роста с ИИ.
→ Если маркетолог – узнаете, как автоматизировать контент, анализ конкурентов и персонализацию.
→ Если аналитик – получите рабочие методики AI-обработки данных.
✉️ Что дальше?
Подписывайтесь, следите за обновлениями и пишите, какие темы интересны вам! Уже завтра – первый большой дайджест. 🚀
#AI #бизнес #нейросети #тренды #инновации
📌 Что вас ждет здесь?
Каждый день искусственный интеллект меняет правила игры в бизнесе: новые инструменты, алгоритмы, подходы к маркетингу, аналитике и автоматизации. Мы собрали всё самое важное, от новостей до готовых решений, чтобы вы не тратили время на поиск — только полезные инсайты и практический контент.
💡 Формат канала:
🔹 Форсайты и сценарии AI – цифровизации.
🔹 Ключевые новости AI – свежие события и тренды, которые реально влияют на рынок.
🔹 Готовые решения и Mega Prompt – проверенные шаблоны для маркетинга, продаж, аналитики и автоматизации.
🔹 Разборы кейсов – как компании внедряют нейросети и получают реальную выгоду.
🔹 Диалоги с AI-экспертами – моделируем обсуждения бизнес-тем с ИИ (например, «Что бы сказал Аристотель о будущем предпринимательства?»).
🔹 Видео и подкасты – короткие форматы для быстрого погружения.
🔥 Чем это полезно?
→ Если вы фаундер, здесь найдете стратегии роста с ИИ.
→ Если маркетолог – узнаете, как автоматизировать контент, анализ конкурентов и персонализацию.
→ Если аналитик – получите рабочие методики AI-обработки данных.
✉️ Что дальше?
Подписывайтесь, следите за обновлениями и пишите, какие темы интересны вам! Уже завтра – первый большой дайджест. 🚀
#AI #бизнес #нейросети #тренды #инновации
👍4
Черные Лебеди.pdf
588.1 KB
Mega Prompt для поиска «Черных Лебедей» – мощный инструмент аналитики рисков
🦢 Что, если можно заранее выявлять редкие, но разрушительные события, способные перевернуть рынки и бизнес?
Этот Mega Prompt – универсальный шаблон, который помогает ИИ находить потенциальные «черные лебеди» на основе макроэкономических, геополитических и технологических данных.
📊 В файле — не только сам шаблон, но и 4 примера аналитики, созданные разными нейросетями на его основе. Отчёты охватывают:
🔹 Глобальные санкционные риски и цифровую изоляцию
🔹 Технологические угрозы: ИИ-коллапс и киберпандемии
🔹 Финансовые дисбалансы и крах мультивалютных резервов
🔹 Стратегии митигации: от стресс-тестов до цифровой автономии
💡 Этот Mega Prompt – полезный инструмент для аналитиков, инвесторов и стратегов, которые хотят использовать ИИ для предсказания будущих кризисов.
Делитесь мнением!
#AI #аналитика #рискменеджмент
🦢 Что, если можно заранее выявлять редкие, но разрушительные события, способные перевернуть рынки и бизнес?
Этот Mega Prompt – универсальный шаблон, который помогает ИИ находить потенциальные «черные лебеди» на основе макроэкономических, геополитических и технологических данных.
📊 В файле — не только сам шаблон, но и 4 примера аналитики, созданные разными нейросетями на его основе. Отчёты охватывают:
🔹 Глобальные санкционные риски и цифровую изоляцию
🔹 Технологические угрозы: ИИ-коллапс и киберпандемии
🔹 Финансовые дисбалансы и крах мультивалютных резервов
🔹 Стратегии митигации: от стресс-тестов до цифровой автономии
💡 Этот Mega Prompt – полезный инструмент для аналитиков, инвесторов и стратегов, которые хотят использовать ИИ для предсказания будущих кризисов.
Делитесь мнением!
#AI #аналитика #рискменеджмент
👍1
ТОП-20 ключевых тезисов из документа "Рынок Gen🧠 в 2025.
Что нужно знать бизнесу"
- часть 1⚠️
1. Рынок GenAI растёт рекордными темпами
📌 Ожидаемый среднегодовой темп роста (CAGR) с 2024 по 2030 год — 46,48%.
📌 К 2030 году мировой рынок достигнет $356 млрд, увеличившись в 10 раз.
2. Лидерами рынка остаются США и Китай
📌 США прогнозируют объём GenAI-рынка в $115 млрд к 2030 году, ключевой драйвер — реклама.
📌 Китай вкладывает $138 млрд в государственные AI-программы, угрожая доминированию США.
📌 Россия пока отстаёт: прогнозируемый объём — $4,15 млрд к 2030 году.
3. Массовый переход к Multi-Agent Systems (MAS)
📌 AI-системы переходят от копилотов к автономным AI-агентам, способным выполнять сложные многоступенчатые задачи без прямого участия человека.
📌 Новая архитектура Shared Recurrent Memory Transformer (SRMT) позволяет агентам обмениваться памятью, ускоряя обучение и координацию.
4. RAG (Retrieval-Augmented Generation) становится стандартом
📌 AI-модели всё чаще используют дополнительный поиск данных перед генерацией ответов.
📌 В 2025 году расширены возможности RAG для работы с видеоконтентом и многомодальными данными.
5. Расцвет специализированных малых языковых моделей (SLM)
📌 Компактные и узкоспециализированные модели дешевле, быстрее и лучше адаптируются к конкретным бизнес-задачам.
📌 Gartner прогнозирует, что к 2027 году 50% бизнес-моделей GenAI будут отраслевыми.
6. Самообучающиеся модели снижают стоимость AI-разработки
📌 Китайская DeepSeek-R1 сократила стоимость обучения с $500 млн до $12 млн.
📌 Использование Reinforcement Learning (RL) и самосовершенствования делает AI более дешёвым и эффективным.
7. Данные становятся продуктом, растёт рынок AI-маркетплейсов
📌 Компании не только используют данные, но и продают их как продукт, создавая собственных AI-агентов.
📌 Slack Agent Hub — пример хаба AI-агентов, объединяющего решения Salesforce, Adobe, Anthropic, Cohere, Perplexity.
8. Генеративный AI меняет UX-дизайн
📌 AI-интерфейсы становятся более персонализированными: AI-помощники, автогенерация контента, автоматизация работы с текстами и видео.
9. Массовое внедрение AI-агентов в физические устройства
📌 В 2025 году 30% смартфонов будут поддерживать AI-ассистентов.
📌 Развитие AI-компьютеров: прогнозируемые поставки 114 млн AI-ноутбуков в 2025 году.
10. Развитие AI Governance Platforms
📌 Компании внедряют платформы управления AI, чтобы снижать юридические и этические риски.
📌 Стартапы Credo AI и Enzai AI привлекли многомиллионные инвестиции в AI-этику.
- - -
#Аналитика #ИИ #Тезисы #Тренды
Что нужно знать бизнесу"
- часть 1
1. Рынок GenAI растёт рекордными темпами
📌 Ожидаемый среднегодовой темп роста (CAGR) с 2024 по 2030 год — 46,48%.
📌 К 2030 году мировой рынок достигнет $356 млрд, увеличившись в 10 раз.
2. Лидерами рынка остаются США и Китай
📌 США прогнозируют объём GenAI-рынка в $115 млрд к 2030 году, ключевой драйвер — реклама.
📌 Китай вкладывает $138 млрд в государственные AI-программы, угрожая доминированию США.
📌 Россия пока отстаёт: прогнозируемый объём — $4,15 млрд к 2030 году.
3. Массовый переход к Multi-Agent Systems (MAS)
📌 AI-системы переходят от копилотов к автономным AI-агентам, способным выполнять сложные многоступенчатые задачи без прямого участия человека.
📌 Новая архитектура Shared Recurrent Memory Transformer (SRMT) позволяет агентам обмениваться памятью, ускоряя обучение и координацию.
4. RAG (Retrieval-Augmented Generation) становится стандартом
📌 AI-модели всё чаще используют дополнительный поиск данных перед генерацией ответов.
📌 В 2025 году расширены возможности RAG для работы с видеоконтентом и многомодальными данными.
5. Расцвет специализированных малых языковых моделей (SLM)
📌 Компактные и узкоспециализированные модели дешевле, быстрее и лучше адаптируются к конкретным бизнес-задачам.
📌 Gartner прогнозирует, что к 2027 году 50% бизнес-моделей GenAI будут отраслевыми.
6. Самообучающиеся модели снижают стоимость AI-разработки
📌 Китайская DeepSeek-R1 сократила стоимость обучения с $500 млн до $12 млн.
📌 Использование Reinforcement Learning (RL) и самосовершенствования делает AI более дешёвым и эффективным.
7. Данные становятся продуктом, растёт рынок AI-маркетплейсов
📌 Компании не только используют данные, но и продают их как продукт, создавая собственных AI-агентов.
📌 Slack Agent Hub — пример хаба AI-агентов, объединяющего решения Salesforce, Adobe, Anthropic, Cohere, Perplexity.
8. Генеративный AI меняет UX-дизайн
📌 AI-интерфейсы становятся более персонализированными: AI-помощники, автогенерация контента, автоматизация работы с текстами и видео.
9. Массовое внедрение AI-агентов в физические устройства
📌 В 2025 году 30% смартфонов будут поддерживать AI-ассистентов.
📌 Развитие AI-компьютеров: прогнозируемые поставки 114 млн AI-ноутбуков в 2025 году.
10. Развитие AI Governance Platforms
📌 Компании внедряют платформы управления AI, чтобы снижать юридические и этические риски.
📌 Стартапы Credo AI и Enzai AI привлекли многомиллионные инвестиции в AI-этику.
- - -
#Аналитика #ИИ #Тезисы #Тренды
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1🔥1
- часть 2 ⚠️
11. Гибридные и энергоэффективные вычисления — будущее AI
📌 AI-системы переходят от классических GPU-архитектур к гибридным, включая квантовые, фотонные и нейроморфные вычисления.
12. Синтетические данные становятся нормой
📌 К 2026 году 75% компаний будут использовать AI для генерации синтетических клиентских данных.
📌 В России создаётся национальный стандарт синтеза данных (Ассоциация больших данных, Сбер, РФПИ).
13. Генеративный AI радикально меняет рынок труда
📌 AI Ready — новое поколение специалистов, активно использующих AI.
📌 66% руководителей планируют нанимать сотрудников с AI-навыками, даже если они не технические специалисты.
📌 25% рост зарплат в AI-сфере.
14. AI-агенты заменяют рутинные профессии
📌 В банках AI копилоты уже выполняют 80% задач кредитных менеджеров.
📌 AI становится частью HR-процессов: оценка сотрудников, постановка задач, подбор персонала.
15. AI становится частью человеческой нейрофизиологии
📌 К 2030 году 60% IT-работников будут использовать мозг-машинные интерфейсы (BBMI) для повышения когнитивных способностей.
16. Генеративный AI переходит к reasoning-моделям
📌 OpenAI O1, G1 (Groq), Agent Q, YandexGPT 4 — новые reasoning-модели, способные анализировать сложные логические задачи.
📌 Использование Chain-of-Thought (CoT) повышает точность AI в сложных сценариях.
17. AI выходит за пределы RLHF — новая эпоха RLAIF
📌 Reinforcement Learning with AI Feedback (RLAIF) позволяет AI-моделям обучаться друг у друга, а не только от людей.
📌 GPT-4V, LLaMA 2-70B с RLAIF демонстрируют превосходство над ChatGPT-3.5.
18. Оптимизация работы с длинными контекстами
📌 NVIDIA ChatQA 2 поддерживает контекст до 128 тыс. токенов.
📌 Использование эпизодической памяти и методов сжатия снижает энергозатраты AI.
19. От экспериментов к реальным бизнес-эффектам
📌 Универсальной методики оценки эффективности AI пока нет, но ключевые метрики включают:
ROI внедрения AI
Влияние на прибыль
Снижение затрат на персонал
20. AI-революция — не хайп, а новый технологический цикл
📌 Как интернет в 90-х и мобильные технологии в 2000-х, AI формирует новый этап цифровой трансформации.
📌 Побеждают те, кто адаптируется быстрее и внедряет AI в бизнес.
- - -
#Аналитика #ИИ #Тезисы #Тренды
11. Гибридные и энергоэффективные вычисления — будущее AI
📌 AI-системы переходят от классических GPU-архитектур к гибридным, включая квантовые, фотонные и нейроморфные вычисления.
12. Синтетические данные становятся нормой
📌 К 2026 году 75% компаний будут использовать AI для генерации синтетических клиентских данных.
📌 В России создаётся национальный стандарт синтеза данных (Ассоциация больших данных, Сбер, РФПИ).
13. Генеративный AI радикально меняет рынок труда
📌 AI Ready — новое поколение специалистов, активно использующих AI.
📌 66% руководителей планируют нанимать сотрудников с AI-навыками, даже если они не технические специалисты.
📌 25% рост зарплат в AI-сфере.
14. AI-агенты заменяют рутинные профессии
📌 В банках AI копилоты уже выполняют 80% задач кредитных менеджеров.
📌 AI становится частью HR-процессов: оценка сотрудников, постановка задач, подбор персонала.
15. AI становится частью человеческой нейрофизиологии
📌 К 2030 году 60% IT-работников будут использовать мозг-машинные интерфейсы (BBMI) для повышения когнитивных способностей.
16. Генеративный AI переходит к reasoning-моделям
📌 OpenAI O1, G1 (Groq), Agent Q, YandexGPT 4 — новые reasoning-модели, способные анализировать сложные логические задачи.
📌 Использование Chain-of-Thought (CoT) повышает точность AI в сложных сценариях.
17. AI выходит за пределы RLHF — новая эпоха RLAIF
📌 Reinforcement Learning with AI Feedback (RLAIF) позволяет AI-моделям обучаться друг у друга, а не только от людей.
📌 GPT-4V, LLaMA 2-70B с RLAIF демонстрируют превосходство над ChatGPT-3.5.
18. Оптимизация работы с длинными контекстами
📌 NVIDIA ChatQA 2 поддерживает контекст до 128 тыс. токенов.
📌 Использование эпизодической памяти и методов сжатия снижает энергозатраты AI.
19. От экспериментов к реальным бизнес-эффектам
📌 Универсальной методики оценки эффективности AI пока нет, но ключевые метрики включают:
ROI внедрения AI
Влияние на прибыль
Снижение затрат на персонал
20. AI-революция — не хайп, а новый технологический цикл
📌 Как интернет в 90-х и мобильные технологии в 2000-х, AI формирует новый этап цифровой трансформации.
📌 Побеждают те, кто адаптируется быстрее и внедряет AI в бизнес.
- - -
#Аналитика #ИИ #Тезисы #Тренды
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥1
🤯 Неочевидные инсайты 🧠
1. AI не заменит сотрудников, но усилит их – важна новая роль управленцев
📌 AI-агенты не вытесняют людей, а делают их сверхпродуктивными. Но руководители, которые не умеют работать с AI-командами, быстро станут нерелевантными.
🟢 Действие: Основателям и топ-менеджерам нужно учиться управлять AI-гибридными командами (люди + агенты), иначе их заменят конкуренты, работающие с AI.
2. AI вытесняет middle-management – но увеличивает спрос на стратегов
📌 Автоматизация наиболее сильно ударит по middle-менеджменту, но создаст высокий спрос на стратегов и AI-архитекторов.
🟢 Действие: Сфокусируйтесь на развитии стратегического мышления и AI-архитектуры, а не только на операционном управлении.
3. Multi-Agent Systems (MAS) – это не будущее, а текущая реальность
📌 MAS – главный AI-тренд 2025, и они будут способны работать без людей во многих сферах: финансы, аналитика, маркетинг.
🟢 Действие: Начните внедрять AI-агентов для управления процессами, а не только для поддержки.
4. AI-асимметрия: крупные компании не смогут быстро адаптироваться
📌 Малый и средний бизнес внедрит AI быстрее – корпорациям мешают бюрократия и сложные IT-системы.
🟢 Действие: Если вы стартап или средний бизнес, используйте AI-асимметрию – внедряйте AI быстрее, пока крупные игроки тормозят.
5. RAG-технология – будущее AI-аналитики
📌 Retrieval-Augmented Generation (RAG) – AI теперь не просто генерирует текст, а ищет факты и данные в реальном времени.
🟢 Действие: Используйте RAG-модели в корпоративных системах для более точных решений.
6. AI встраивается в железо, и это новый этап гонки
📌 Уже в 2025 году 30% смартфонов и 114 млн AI-ноутбуков выйдут с AI-ассистентами.
🟢 Действие: Разрабатывайте AI-решения с учётом мобильных устройств и гибридных вычислений.
7. AI Governance станет стандартом – но не в России
📌 Компании в США и ЕС уже внедряют AI Governance Platforms для управления этикой и рисками AI, а в России этот тренд пока не развит.
🟢 Действие: Если ваша компания работает глобально, подготовьтесь к новым требованиям регулирования AI.
8. AI-синергия с IoT создаст новую волну инноваций
📌 AI-системы начнут управлять реальными объектами: складскими роботами, машинами, производственными линиями.
🟢 Действие: Если ваш бизнес связан с физическими процессами, начните тестировать AI в операционных системах.
9. Нейроинтерфейсы (BBMI) – следующий шаг после AI-ассистентов
📌 К 2030 году 60% IT-специалистов будут использовать мозг-машинные интерфейсы для повышения когнитивных способностей.
🟢 Действие: Следите за развитием BBMI и готовьтесь к интеграции этих технологий в рабочие процессы.
10. AI-революция поднимет стандарты в кибербезопасности
📌 Чем больше AI-систем, тем выше риск атак – компании должны усиливать AI-защиту.
🟢 Действие: Внедряйте AI-решения для мониторинга киберугроз.
11. AI требует пересмотра бизнес-моделей – просто автоматизация не поможет
📌 Компании, которые просто "автоматизируют" старые процессы с помощью AI, проиграют. Выиграют те, кто создаст новые бизнес-модели с AI.
🟢 Действие: Не просто автоматизируйте, а создавайте AI-ориентированные бизнес-модели.
12. AI – это не только LLM, но и новые архитектуры
📌 Модели reasoning и Multi-Agent Systems – главная точка роста, а не просто увеличение параметров LLM.
🟢 Действие: Внедряйте AI-агентов, а не просто чат-ботов.
13. AI + синтетические данные = новая волна масштабирования
📌 К 2026 году 75% компаний будут использовать синтетические данные для обучения моделей.
🟢 Действие: Начните создавать собственные синтетические датасеты для AI.
14. AI создаёт новую элиту управленцев
📌 AI не заменит людей – но сделает некоторых управленцев ненужными. Выживают те, кто адаптируется.
🟢 Действие: Развивайте AI-компетенции не только у сотрудников, но и у себя.
- - -
#AI #бизнес #нейросети #тренды #инновации
- - -
1. AI не заменит сотрудников, но усилит их – важна новая роль управленцев
📌 AI-агенты не вытесняют людей, а делают их сверхпродуктивными. Но руководители, которые не умеют работать с AI-командами, быстро станут нерелевантными.
🟢 Действие: Основателям и топ-менеджерам нужно учиться управлять AI-гибридными командами (люди + агенты), иначе их заменят конкуренты, работающие с AI.
2. AI вытесняет middle-management – но увеличивает спрос на стратегов
📌 Автоматизация наиболее сильно ударит по middle-менеджменту, но создаст высокий спрос на стратегов и AI-архитекторов.
🟢 Действие: Сфокусируйтесь на развитии стратегического мышления и AI-архитектуры, а не только на операционном управлении.
3. Multi-Agent Systems (MAS) – это не будущее, а текущая реальность
📌 MAS – главный AI-тренд 2025, и они будут способны работать без людей во многих сферах: финансы, аналитика, маркетинг.
🟢 Действие: Начните внедрять AI-агентов для управления процессами, а не только для поддержки.
4. AI-асимметрия: крупные компании не смогут быстро адаптироваться
📌 Малый и средний бизнес внедрит AI быстрее – корпорациям мешают бюрократия и сложные IT-системы.
🟢 Действие: Если вы стартап или средний бизнес, используйте AI-асимметрию – внедряйте AI быстрее, пока крупные игроки тормозят.
5. RAG-технология – будущее AI-аналитики
📌 Retrieval-Augmented Generation (RAG) – AI теперь не просто генерирует текст, а ищет факты и данные в реальном времени.
🟢 Действие: Используйте RAG-модели в корпоративных системах для более точных решений.
6. AI встраивается в железо, и это новый этап гонки
📌 Уже в 2025 году 30% смартфонов и 114 млн AI-ноутбуков выйдут с AI-ассистентами.
🟢 Действие: Разрабатывайте AI-решения с учётом мобильных устройств и гибридных вычислений.
7. AI Governance станет стандартом – но не в России
📌 Компании в США и ЕС уже внедряют AI Governance Platforms для управления этикой и рисками AI, а в России этот тренд пока не развит.
🟢 Действие: Если ваша компания работает глобально, подготовьтесь к новым требованиям регулирования AI.
8. AI-синергия с IoT создаст новую волну инноваций
📌 AI-системы начнут управлять реальными объектами: складскими роботами, машинами, производственными линиями.
🟢 Действие: Если ваш бизнес связан с физическими процессами, начните тестировать AI в операционных системах.
9. Нейроинтерфейсы (BBMI) – следующий шаг после AI-ассистентов
📌 К 2030 году 60% IT-специалистов будут использовать мозг-машинные интерфейсы для повышения когнитивных способностей.
🟢 Действие: Следите за развитием BBMI и готовьтесь к интеграции этих технологий в рабочие процессы.
10. AI-революция поднимет стандарты в кибербезопасности
📌 Чем больше AI-систем, тем выше риск атак – компании должны усиливать AI-защиту.
🟢 Действие: Внедряйте AI-решения для мониторинга киберугроз.
11. AI требует пересмотра бизнес-моделей – просто автоматизация не поможет
📌 Компании, которые просто "автоматизируют" старые процессы с помощью AI, проиграют. Выиграют те, кто создаст новые бизнес-модели с AI.
🟢 Действие: Не просто автоматизируйте, а создавайте AI-ориентированные бизнес-модели.
12. AI – это не только LLM, но и новые архитектуры
📌 Модели reasoning и Multi-Agent Systems – главная точка роста, а не просто увеличение параметров LLM.
🟢 Действие: Внедряйте AI-агентов, а не просто чат-ботов.
13. AI + синтетические данные = новая волна масштабирования
📌 К 2026 году 75% компаний будут использовать синтетические данные для обучения моделей.
🟢 Действие: Начните создавать собственные синтетические датасеты для AI.
14. AI создаёт новую элиту управленцев
📌 AI не заменит людей – но сделает некоторых управленцев ненужными. Выживают те, кто адаптируется.
🟢 Действие: Развивайте AI-компетенции не только у сотрудников, но и у себя.
- - -
#AI #бизнес #нейросети #тренды #инновации
- - -
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1🔥1
🔥 Фреймворки для эффективных промтов ChatGPT
Хотите получать от ИИ точные, структурированные и релевантные ответы? Я подготовил материал с лучшими фреймворками для создания продуманных промтов.
В файле — 9 мощных структур, включая:
✅ ERA (Ожидание, Роль, Действие)
✅ CARE (Контекст, Действие, Результат, Пример)
✅ RACE (Роль, Действие, Контекст, Ожидание)
…и другие!
💡 Это универсальные схемы для бизнеса, аналитики, маркетинга и контент-креаторов. Теперь промты будут работать на 100%!
📩 Забирайте файл и используйте: [ссылка]
📊 Какой фреймворк вам понравился больше всего?
#ChatGPT #Промты #Автоматизация #AI #Бизнес #Нейросети
Хотите получать от ИИ точные, структурированные и релевантные ответы? Я подготовил материал с лучшими фреймворками для создания продуманных промтов.
В файле — 9 мощных структур, включая:
✅ ERA (Ожидание, Роль, Действие)
✅ CARE (Контекст, Действие, Результат, Пример)
✅ RACE (Роль, Действие, Контекст, Ожидание)
…и другие!
💡 Это универсальные схемы для бизнеса, аналитики, маркетинга и контент-креаторов. Теперь промты будут работать на 100%!
📩 Забирайте файл и используйте: [ссылка]
📊 Какой фреймворк вам понравился больше всего?
#ChatGPT #Промты #Автоматизация #AI #Бизнес #Нейросети
👍1
Часть 2. Неочевидные инсайты
(Выводы, которые следуют из обсуждения, но явно не проговаривались или требуют нестандартного взгляда)
1. AI может стать не просто инструментом, а "зеркалом" бизнес-процессов
• AI не только решает задачи, но и показывает, где в компании бардак.
• Если AI не работает в компании, проблема в самих процессах, а не в технологиях.
• Искусственный интеллект – это "рентген" неэффективного менеджмента.
2. Компании хотят AI, но не хотят меняться
• Бизнес мечтает о «волшебной кнопке», которая сразу принесёт результаты.
• В реальности AI требует перестройки процессов, а это никому не хочется делать.
• Компании боятся признаться, что их системы работают на "костылях", и предпочитают ничего не менять.
3. Страх перед AI – это не страх технологий, а страх управленческой некомпетентности
• Менеджеры боятся не AI, а того, что AI покажет их неэффективность.
• Чем выше уровень управленческой компетентности, тем меньше сопротивление AI.
• "AI нас уволит" – не страх, а оправдание для тех, кто не хочет учиться новому.
4. Будущее AI – в «автоматизированном мышлении», а не просто в анализе данных
• Сегодня AI помогает с обработкой данных, но будущее – за моделированием решений.
• AI будет не просто анализировать, но и предлагать управленческие стратегии.
• Управленцы будущего – это люди, которые умеют быстро адаптировать AI-аналитику под реальный бизнес.
5. Большинство AI-стартапов умирает, потому что решает проблемы, которых нет
• Люди платят за боли, а не за "прикольные технологии".
• AI-продукты должны фокусироваться на задачах, которые приносят реальные убытки.
• «Стартапы-витаминки» не жизнеспособны – выживают только «обезболивающие» решения.
6. Нейросети в бизнесе – это не про “технологию”, а про “социальную инженерию”
• Внедрение AI – это не IT-проект, а процесс управления изменениями.
• Успешное внедрение требует работы с корпоративной культурой и изменением мышления.
• Чем сложнее компания, тем важнее сначала работать с людьми, а уже потом с технологиями.
7. Будущее не за “AI, который делает всё”, а за “сборными AI-конструкторами”
• У каждой задачи своя нейросеть: Clode /GPT – для креатива и решения задач, Perplexity – для поиска.
• Настоящая эффективность AI – в комбинировании лучших решений под каждую задачу.
• Бизнесам нужен "AI-оркестр", а не "AI-скрипка" – много агентов, каждый для своей роли.
- - -
(Выводы, которые следуют из обсуждения, но явно не проговаривались или требуют нестандартного взгляда)
1. AI может стать не просто инструментом, а "зеркалом" бизнес-процессов
• AI не только решает задачи, но и показывает, где в компании бардак.
• Если AI не работает в компании, проблема в самих процессах, а не в технологиях.
• Искусственный интеллект – это "рентген" неэффективного менеджмента.
2. Компании хотят AI, но не хотят меняться
• Бизнес мечтает о «волшебной кнопке», которая сразу принесёт результаты.
• В реальности AI требует перестройки процессов, а это никому не хочется делать.
• Компании боятся признаться, что их системы работают на "костылях", и предпочитают ничего не менять.
3. Страх перед AI – это не страх технологий, а страх управленческой некомпетентности
• Менеджеры боятся не AI, а того, что AI покажет их неэффективность.
• Чем выше уровень управленческой компетентности, тем меньше сопротивление AI.
• "AI нас уволит" – не страх, а оправдание для тех, кто не хочет учиться новому.
4. Будущее AI – в «автоматизированном мышлении», а не просто в анализе данных
• Сегодня AI помогает с обработкой данных, но будущее – за моделированием решений.
• AI будет не просто анализировать, но и предлагать управленческие стратегии.
• Управленцы будущего – это люди, которые умеют быстро адаптировать AI-аналитику под реальный бизнес.
5. Большинство AI-стартапов умирает, потому что решает проблемы, которых нет
• Люди платят за боли, а не за "прикольные технологии".
• AI-продукты должны фокусироваться на задачах, которые приносят реальные убытки.
• «Стартапы-витаминки» не жизнеспособны – выживают только «обезболивающие» решения.
6. Нейросети в бизнесе – это не про “технологию”, а про “социальную инженерию”
• Внедрение AI – это не IT-проект, а процесс управления изменениями.
• Успешное внедрение требует работы с корпоративной культурой и изменением мышления.
• Чем сложнее компания, тем важнее сначала работать с людьми, а уже потом с технологиями.
7. Будущее не за “AI, который делает всё”, а за “сборными AI-конструкторами”
• У каждой задачи своя нейросеть: Clode /GPT – для креатива и решения задач, Perplexity – для поиска.
• Настоящая эффективность AI – в комбинировании лучших решений под каждую задачу.
• Бизнесам нужен "AI-оркестр", а не "AI-скрипка" – много агентов, каждый для своей роли.
- - -
👍1
Forwarded from Censum
#AI #Хвилософия #Интеллект #Мышление
Посмотрел интеллектуальное пиршество, подкаст Лекса Фридмана (родился в России, закончил MIT, занимается обучением АИшечки. управляющей человекоподобными роботами и ведёт популярный в техномире подкаст) и Иошуа Бахом (родился в Восточной Германии, сам себя считает нёрдом, разбирается примерно во всём - но особенно в интеллекте. Серьёзно: политология, теология, философия, биология, математика - включая теорию категорий и теорию игр, психология, социология, физика, палеонтология, etc. Является системщиком, методологом и вице-президентом фонда по развитию ИИ).
Вот некоторые ключевые идеи подкаста:
Интеллект — это способность создавать модели мира и предсказывать его поведение.
Сознание — это симуляция, созданная мозгом для взаимодействия с миром.
Искусственный интеллект — это не только технология, но и философский проект, который требует понимания природы человеческого разума.
Реальность может быть симуляцией, созданной более развитым интеллектом.
Эмоции — это механизм, который помогает нам взаимодействовать с миром и принимать решения.
Смысл жизни — это то, что мы создаем сами, и главная цель человечества — построить устойчивую цивилизацию.
____________________________
Но вам будет понятнее, зачем это слушать, если вы просто пощупаете на вкус механику и красоту его определений. Дальше - в основном либо прямые цитаты. либо (как успел записать на слух) упрощённые мысли (но цитаты - чаще). Любуйтесь:
Посмотрел интеллектуальное пиршество, подкаст Лекса Фридмана (родился в России, закончил MIT, занимается обучением АИшечки. управляющей человекоподобными роботами и ведёт популярный в техномире подкаст) и Иошуа Бахом (родился в Восточной Германии, сам себя считает нёрдом, разбирается примерно во всём - но особенно в интеллекте. Серьёзно: политология, теология, философия, биология, математика - включая теорию категорий и теорию игр, психология, социология, физика, палеонтология, etc. Является системщиком, методологом и вице-президентом фонда по развитию ИИ).
Вот некоторые ключевые идеи подкаста:
Интеллект — это способность создавать модели мира и предсказывать его поведение.
Сознание — это симуляция, созданная мозгом для взаимодействия с миром.
Искусственный интеллект — это не только технология, но и философский проект, который требует понимания природы человеческого разума.
Реальность может быть симуляцией, созданной более развитым интеллектом.
Эмоции — это механизм, который помогает нам взаимодействовать с миром и принимать решения.
Смысл жизни — это то, что мы создаем сами, и главная цель человечества — построить устойчивую цивилизацию.
____________________________
Но вам будет понятнее, зачем это слушать, если вы просто пощупаете на вкус механику и красоту его определений. Дальше - в основном либо прямые цитаты. либо (как успел записать на слух) упрощённые мысли (но цитаты - чаще). Любуйтесь:
Нёрд - тот, кто делится гипотезами о вселенной, остальные коммуницируют, чтобы договариваться (о чём-то)
Ницше - это шитпостинг 😊
Если ты относишься слишком серьёзно к себе, то ты не функционален (Волк - одиночка, Гессе)
Существование является параметром по умолчанию
В каком-то смысле обе Германии утратили свои интеллектуальные традиции, - даже убийство и изгнание евреев не помогло
Пи - не только величина, но и функция
Витгенштейн отменял некоторые лекции, если в зале не было Тьюринга, - он считал что нет смысла тратить время на других...
Современное ИИ - это ускоренная обработка информации [а не калькулятор]
Интеллект - способность решить проблемы, и способность моделировать
Интеллект - способность представлять вещи в виде паттернов, видеть структуру этих паттернов и быть способным предсказать следующий набор паттернов, чтобы понять смысл вещей
Некоторые проблемы настолько сложные, что система, которая их решает, должна осознавать сама себя и как она связана с окружающим миром
Интеллект - это проект реверсивной инженерии самого себя для взаимодействия с реальностью
Тест Тьюринга - это когда интеллект может объяснить сам-себя. По факту, ты проходишь тест Тьюринга, если можешь создать ИИ
Достаточно ли мы умны, чтобы понять самих себя?
Многие высокоинтеллектуальные люди не слишком хорошо осознают себя
Фундаментальный проект - создать систему самообучения. способность осмыслять мир и своё место в нём
Разумность - обладание особым классом моделей, а интеллект - способность создать их
За материальный мир ответственна одна из наших ментальных способностей
Видимый мир - в основном католическая культура
Бог - это платоническая форма организации. частью которой ты являешься
Бог - это подобие мультимозга
Общее ПО, одна и та же спецификация и обслуживается одна и та же структура в итоге
Бог - программист в этой MMORPG, а мы - игроки
Физический уровень - причинно-замкнутый, узкий, механический
Единственное, что реально - феноменальное, ты видишь только строгие паттерны
Для идеалиста - материальное - это сон
Материалист - это мир, который генерирует модели [вещей]
Мозг сам для себя пишет историю себя, и это нарратив, т.н. "реальность"
Сознательной может быть только симуляция, наш разум - симуляция (разум - это набор правил для создания симуляции, который создаёт всё. включая идею Я)
Мы живём внутри циклов обратной связи
Отождествления - это цель регулирования
Постоянное явление - результат контроля, поддерживающего паттерн
Идентичность - это ПО, по сути это отзеркаливание объектов от окружающего мира
Цвет и звук - это тип восприятия, в реальном мире их нет
Forwarded from Censum
Сознание - модель содержания твоего внимания. Механизм который эволюционировал для твоего движения
Ошибка функционирует в системе, пока она не накапливается в узлах сети
Я вижу вещи, которые могут оказаться моими отражениями (или тенями)
Внимание к вниманию - метанавык
Механизм внимания удерживает концепции
Системы не могут интегрировать смысл в повествование
Язык - отражение понимания в дискретном
Идеи не умирают, умирают только люди
Образы играют важную роль в трактате
Решение заключается в наиболее общей аппроксимации функций
Вероятность необходима для совместимости, а возможность - для выживания
Политика - это очень просто, пока ты не знаешь про теорию игр
Чем больше слоёв реальности ты моделируешь, тем сложнее всё становится {и тем труднее её объяснить]
Метаобучние - поиск архитектуры. Создание места для алгоритма, который автоматически ищет алгоритмы
Метаобучение - поиск алгоритма, который ищет алгоритмы для обучения алгоритмам
Дух - операционная система для автономного робота
Культура - это дух общества
Нужно подчиниться экосистеме вместо того, чтобы пытаться контролировать её
Общество зависит от способности контролировать всю планету
Одна строительная клетка в базе всех клеток
Замкнутая цепь охлаждения - машина, квартира, супермаркет и пр. Ты как кусок мяса в supply chain
Технологии в США находятся в состоянии стагнации с 1970-х годов
США переходят от общества с высоким уровнем доверия к обществу с низким уровнем доверия
Люди могут сказать, что все культуры хороши, но сами придерживаются только определённых из них
Люди сожгли деревья стоимость сто миллионов лет
Медитация - способ установить контроль внимания
Обычно мы смотрим только на несоответствие наших ожиданий и результатов
Огромное количество (неявной) информации не доступно нейросетям для анализа
Концепции, - адресное пространство для наших ментальных программ
Мозг не масштабируется
ИИ не принципиально важно наличие тела
Мотивация заставляет тебя сопротивляться окружающей среде
Закон, - очень странное ПО и оно в основном работает за счёт обработки вычислений
Эмпатия, это моделирование интерфейсного слоя другого человека в режиме реального времени. И возможна только благодаря тому, что процесс этот периодический
Справедливость, воздержание и мужество (идеал Фомы Аквинского)
Мы - вид, который создаёт государства
США оптимизированы не для устойчивого процесса, а для инноваций
Эмоции, это конфигурация когнитивной системы
Счастье, это печенье, которое мозг печет сам для себя
Ветхий завет, - реконструкция детства бога
YouTube
Подкаст об ИИ и не только. Лекс Фридман – Йошуа Бах. Часть 1
Гость данного подкаста, Йошуа Бах — немецкий исследователь искусственного интеллекта и когнитивист, специализирующийся на когнитивных архитектурах, ментальном представлении, эмоциях, социальном моделировании и многоагентных системах
0:00 - Вступление
3:14…
0:00 - Вступление
3:14…
Безопасность и выравнивание AGI: как OpenAI видит будущее ИИ
OpenAI делает ставку на безопасность искусственного интеллекта (AI), рассматривая его как процесс управления рисками и максимизации пользы для человечества.
🔹 Эволюционный подход к AGI
Компания отошла от идеи “одного большого скачка” в развитии AGI, вместо этого внедряя принцип итеративного развертывания. Это позволяет постепенно адаптироваться к изменениям и снижать риски.
🔹 Основные угрозы AGI
1️⃣ Человеческие злоупотребления – цензура, пропаганда, кибератаки.
2️⃣ Несоответствие целям пользователя – модели могут принимать нежелательные решения.
3️⃣ Социальная дестабилизация – рост неравенства и сдвиг норм.
🔹 Принципы OpenAI по обеспечению безопасности:
✅ Многослойная защита – наложение механизмов безопасности, тестирование и мониторинг.
✅ Итеративное развертывание – адаптация моделей через опыт реального использования.
✅ Методы, масштабируемые с ростом ИИ – улучшение выравнивания моделей по мере их усложнения.
✅ Контроль со стороны человека – AI должен оставаться управляемым, прозрачным и соответствовать демократическим принципам.
Заключение: OpenAI признаёт неопределенность будущего, но нацелен на построение AI, который служит интересам всего общества. 💡
источник
- - -
#AIБезопасность #БудущееИИ #OpenAI
OpenAI делает ставку на безопасность искусственного интеллекта (AI), рассматривая его как процесс управления рисками и максимизации пользы для человечества.
🔹 Эволюционный подход к AGI
Компания отошла от идеи “одного большого скачка” в развитии AGI, вместо этого внедряя принцип итеративного развертывания. Это позволяет постепенно адаптироваться к изменениям и снижать риски.
🔹 Основные угрозы AGI
1️⃣ Человеческие злоупотребления – цензура, пропаганда, кибератаки.
2️⃣ Несоответствие целям пользователя – модели могут принимать нежелательные решения.
3️⃣ Социальная дестабилизация – рост неравенства и сдвиг норм.
🔹 Принципы OpenAI по обеспечению безопасности:
✅ Многослойная защита – наложение механизмов безопасности, тестирование и мониторинг.
✅ Итеративное развертывание – адаптация моделей через опыт реального использования.
✅ Методы, масштабируемые с ростом ИИ – улучшение выравнивания моделей по мере их усложнения.
✅ Контроль со стороны человека – AI должен оставаться управляемым, прозрачным и соответствовать демократическим принципам.
Заключение: OpenAI признаёт неопределенность будущего, но нацелен на построение AI, который служит интересам всего общества. 💡
источник
- - -
#AIБезопасность #БудущееИИ #OpenAI
Openai
How we think about safety and alignment
The mission of OpenAI is to ensure artificial general intelligence (AGI) benefits all of humanity. Safety—the practice of enabling AI’s positive impacts by mitigating the negative ones—is thus core to our mission.
❤1👍1
Anthropic представила свои рекомендации Белому дому по разработке AI Action Plan. Основные предложения:
1. Национальная безопасность – создание стандартов оценки ИИ на предмет угроз, инфраструктуры тестирования и команд анализа уязвимостей.
2. Экспортный контроль – ограничение поставок полупроводников и контроль над развертыванием мощных ИИ-систем в других странах.
3. Безопасность лабораторий – улучшение киберзащиты и связь между AI-лабораториями и спецслужбами.
4. Энергетическая инфраструктура – расширение мощностей на 50 ГВт к 2027 году.
5. Госуправление – внедрение ИИ в государственные процессы для повышения эффективности.
6. Экономические последствия – адаптация механизмов сбора данных и прогнозирование изменений на рынке труда.
Полный документ доступен здесь.
1. Национальная безопасность – создание стандартов оценки ИИ на предмет угроз, инфраструктуры тестирования и команд анализа уязвимостей.
2. Экспортный контроль – ограничение поставок полупроводников и контроль над развертыванием мощных ИИ-систем в других странах.
3. Безопасность лабораторий – улучшение киберзащиты и связь между AI-лабораториями и спецслужбами.
4. Энергетическая инфраструктура – расширение мощностей на 50 ГВт к 2027 году.
5. Госуправление – внедрение ИИ в государственные процессы для повышения эффективности.
6. Экономические последствия – адаптация механизмов сбора данных и прогнозирование изменений на рынке труда.
Полный документ доступен здесь.
📌 Бриф для AI x-Forеsight: Подай свою задачу на разбор!
👋 Если у тебя есть сложная бизнес-проблема, которую трудно решить стандартными методами — заполни этот мини-бриф, и мы разберем её в AI x-Forеsight.
📍 Важно: чем точнее информация, тем быстрее мы найдем эффективное решение.
⸻
1️⃣ Описание проблемы
❓ В чем суть задачи?
(Опиши кратко, но емко, какая проблема требует решения. Например: “Падает конверсия в продажах, но неясно почему” или “Не можем выйти на B2B-клиентов в новой нише”.)
📍 Какие есть ограничения?
(Например: “Бюджет не более X”, “Нужно решение за 2 недели”, “Рынок России, B2B IT-сектор” и т. д.)
🎯 Какой результат считаешь успешным?
(Какие метрики/показатели должны улучшиться?)
⸻
2️⃣ Контекст бизнеса
🏢 В какой сфере работает бизнес?
(IT, финансы, производство, e-commerce и т. д.)
👥 Кто ваша целевая аудитория?
(Малый/средний/крупный бизнес, физлица, B2B/B2C)
📊 Какие данные есть по проблеме?
(Например: CRM-данные, отчеты, динамика продаж, воронка, гипотезы, которые уже тестировали)
⸻
3️⃣ Возможные решения (если есть гипотезы)
🔍 Пробовали ли уже что-то делать?
(Какие шаги предпринимались? Почему не сработало?)
⚡️ Какие идеи для решения уже есть?
(Даже если нет четкого понимания, что делать — напиши любые мысли)
⸻
4️⃣ Формат ответа, который тебе удобен
📌 Что тебе важнее в решении?
• Готовые рекомендации и план действий
• Глубокий анализ ситуации
• Разбор через AI-модели и прогнозы
• Кейсы и примеры из других бизнесов
📌 Как ты хочешь получить разбор?
• Краткое резюме (текст)
• Развернутый разбор (PDF/презентация)
• Видео-разбор с пояснением
📌 Нужно ли сохранить анонимность?
• Да
• Нет, можно публиковать кейс
⸻
✍️ Заполни бриф и отправь нам! Мы выберем самые интересные кейсы и бесплатно разберем их в AI x-Forеsight с детальным анализом и инсайтами.
Брифы и предварительные описания задач отправляйте нам на @fastforesight
🚀 Не теряй время — заполняй и получай готовое решение! Количество бесплатных мест для разбора ограничено😉
👋 Если у тебя есть сложная бизнес-проблема, которую трудно решить стандартными методами — заполни этот мини-бриф, и мы разберем её в AI x-Forеsight.
📍 Важно: чем точнее информация, тем быстрее мы найдем эффективное решение.
⸻
1️⃣ Описание проблемы
❓ В чем суть задачи?
(Опиши кратко, но емко, какая проблема требует решения. Например: “Падает конверсия в продажах, но неясно почему” или “Не можем выйти на B2B-клиентов в новой нише”.)
📍 Какие есть ограничения?
(Например: “Бюджет не более X”, “Нужно решение за 2 недели”, “Рынок России, B2B IT-сектор” и т. д.)
🎯 Какой результат считаешь успешным?
(Какие метрики/показатели должны улучшиться?)
⸻
2️⃣ Контекст бизнеса
🏢 В какой сфере работает бизнес?
(IT, финансы, производство, e-commerce и т. д.)
👥 Кто ваша целевая аудитория?
(Малый/средний/крупный бизнес, физлица, B2B/B2C)
📊 Какие данные есть по проблеме?
(Например: CRM-данные, отчеты, динамика продаж, воронка, гипотезы, которые уже тестировали)
⸻
3️⃣ Возможные решения (если есть гипотезы)
🔍 Пробовали ли уже что-то делать?
(Какие шаги предпринимались? Почему не сработало?)
⚡️ Какие идеи для решения уже есть?
(Даже если нет четкого понимания, что делать — напиши любые мысли)
⸻
4️⃣ Формат ответа, который тебе удобен
📌 Что тебе важнее в решении?
• Готовые рекомендации и план действий
• Глубокий анализ ситуации
• Разбор через AI-модели и прогнозы
• Кейсы и примеры из других бизнесов
📌 Как ты хочешь получить разбор?
• Краткое резюме (текст)
• Развернутый разбор (PDF/презентация)
• Видео-разбор с пояснением
📌 Нужно ли сохранить анонимность?
• Да
• Нет, можно публиковать кейс
⸻
✍️ Заполни бриф и отправь нам! Мы выберем самые интересные кейсы и бесплатно разберем их в AI x-Forеsight с детальным анализом и инсайтами.
Брифы и предварительные описания задач отправляйте нам на @fastforesight
🚀 Не теряй время — заполняй и получай готовое решение! Количество бесплатных мест для разбора ограничено😉
👍3🔥3